Simulink®

Graphical User Interface

Y

MATLAB&SIMULINK

R2017a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Graphical User Interface

© COPYRIGHT 1990-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only

New for Simulink 7.0 (Release 2007b)
Revised for Simulink 7.1 (Release 2008a)
Revised for Simulink 7.2 (Release 2008b)
Revised for Simulink 7.3 (Release 2009a)
Revised for Simulink 7.4 (Release 2009b)
Revised for Simulink 7.5 (Release 2010a)
Revised for Simulink 7.6 (Release 2010b)
Revised for Simulink 7.7 (Release 2011a)
Revised for Simulink 7.8 (Release 2011b)
Revised for Simulink 7.9 (Release 2012a)
Revised for Simulink 8.0 (Release 2012b)
Revised for Simulink 8.1 (Release 2013a)
Revised for Simulink 8.2 (Release 2013b)
Revised for Simulink 8.3 (Release 2014a)
Revised for Simulink 8.4 (Release 2014b)
Revised for Simulink 8.5 (Release 2015a)
Revised for Simulink 8.6 (Release 2015b)
Rereleased for Simulink 8.5.1 (Release
2015aSP1)

Revised for Simulink 8.7 (Release 2016a)
Revised for Simulink 8.8 (Release 2016b)
Revised for Simulink 8.9 (Release 2017a)

Contents

Configuration Parameters Dialog Box

1

Configuration Parameters Dialog Box Overview 1-2
Commonly Used Parameters Tab 1-2
All Parameters Tab 1-3
Model Configuration Pane 1-5
Model Configuration Overview 1-5
Name e 1-6
Description e 1-7
Configuration Parameters (All Parameters Tab Only) 1-7
Hardware Implementation Pane 1-8
Hardware Implementation Overview 1-12
Hardware board, 1-13
Code Generation system target file 1-15
Device vendor 1-16
SPI0O CEO Bus Speed (kHz) 1-18
SPIO CE1 Bus Speed (kHz) 1-19
Run external mode in a background 1-20
Enable External mode 1-21
Digital output to set onoverrun 1-22
Connection type ittt 1-23
Device ID 1-24
IP addressot 1-25
Device type e 1-26
Device details 1-39
Number of bits: char 1-40
Number of bits: short 1-42
Number of bits:int 1-44
Number of bits: long 1-46
Number of bits: longlong 1-48
Number of bits: float 1-50
Number of bits: double 1-51

vi

Contents

Number of bits: native
Number of bits: pointer
Number of bits: size t
Number of bits: ptrdiff t
Largest atomic size: integer
Largest atomic size: floating-point
Byte ordering
Signed integer division rounds to
Shift right on a signed integer as arithmetic shift
Support long long
Device vendor
Device type e
Base Rate Task Priority
Detect task overruns
Device Address
Usernamet
Password
Build action e
Build directory
Set host COM port
Analog input reference voltage
Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial
dbaudrate
SPI clock out frequency in MHz)
SPImode
Bitorder
Use static IP address and disable DHCP
IP address (Ethernet shield)
MAC addresst
Use static IP address and disable DHCP
Connection typet
Device ID
IP address
IP address (WiFishield)
Service set identifier (SSID)
WiFi encryption
WEP key o
WEP key indext
WPA password
Connect to custom ThingSpeak server
Server IP address
Port e
Communication interface
Device

1-52
1-54
1-56
1-58
1-60
1-62
1-64
1-66
1-69
1-71
1-73
1-75
1-87
1-88
1-89
1-90
1-91
1-92
1-93
1-94
1-95

1-96

1-97

1-98

1-99
1-100
1-101
1-102
1-103
1-104
1-105
1-106
1-107
1-108
1-109
1-110
1-111
1-112
1-113
1-114
1-115
1-116
1-117

Package name, 1-118

Port 1-119
Verbose 1-120
IP Address e 1-121
Run on Target Hardware Pane 1-122
Hardware Implementation Pane Overview 1-124
Target hardware 1-125
External mode transport layer 1-126
Enable External mode 1-127
IP address 1-128
Base rate task priority 1-129
Connection typeot 1-130
Device name 1-131
TCP/IP port (1024-65535) 1-132
Enable overrun detection 1-133
Deviceo 1-117
Package name 1-135
Digital output to set onoverrun 1-136
Enable communication between two NXT bricks 1-137
Bluetooth mode 1-138
Slave Bluetooth address 1-139
Host name 1-140
User namettt 1-141
Password 1-142
Build directory 1-143
Set host COM port 1-143
COM port numberc. .. 1-144
Analog input reference voltage 1-144
Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial
dbaudrate 1-145
IP address 1-145
MAC address 1-145
IP address 1-146
Service set identifier (SSID) 1-146
WiFi encryption 1-146
WPA password 1-146
WEP key 1-146
WEP key index 1-146

vii

viii

Contents

Simulink Configuration Parameters: Advanced

2|

Model Configuration Parameters: Advanced Parameters . .

Model Configuration Parameters for Hardware Implementation

Advanced Parameters,
Model Configuration Parameters for Diagnostics Advanced

Parameters

Model Configuration Parameters for Data Import/Export
Advanced Parameters
Model Configuration Parameters for Optimization Advanced

Parameters

Model Configuration Parameters for Simulation Target
Advanced Parameters,

Test hardware is the same as production hardware

Description . .

Settings

T

Dependency .

Recommended settings

Test device vendor and type

Description . .

Settings
Tips
Dependencies

Command-Line Information
Recommended Settings

Number of bits: char

Description . .

Settings
Tip
Dependencies

Command-Line Information
Recommended Settings

Number of bits: short

Description . .

Settings
Tip
Dependencies

2-2

2-4

2-5

2-5

2-7

2-9
2-9
2-9
2-9
2-9

2-11
2-11
2-11
2-15
2-22
2-22
2-23

2-24
2-24
2-24
2-24
2-24
2-24
2-24

2-26
2-26
2-26
2-26
2-26

Command-Line Information

Recommended Settings
Number of bits: int
Description
Settings i e
5
Dependencies
Command-Line Information
Recommended Settings
Number of bits: long
Description
Settings . . oot e
D e e
Dependencies
Command-Line Information
Recommended Settings
Number of bits: longlong
Description e
Settings ..o .t
TIPS oo e
Dependencies
Command-Line Information
Recommended Settings
Number of bits: float
Description
Settings . . oot e
Command-Line Information
Recommended Settings
Number of bits: double
Description e
SettINgS . . . e
Command-Line Information
Recommended Settings
Number of bits: native
Description e
Settings i e
Tap o e

2-26
2-26

2-28
2-28
2-28
2-28
2-28
2-28
2-28

2-30
2-30
2-30
2-30
2-30
2-30
2-31

2-32
2-32
2-32
2-32
2-32
2-32
2-33

2-34
2-34
2-34
2-34
2-34

2-36
2-36
2-36
2-36
2-36

2-38
2-38
2-38
2-38

ix

X

Contents

Dependencies
Command-Line Information
Recommended Settings

Number of bits: pointer

Description
Settings . .

Dependencies
Command-Line Information
Recommended Settings

Number of bits: size_t

Description
Settings . .

Dependencies
Command-Line Information
Recommended Settings

Number of bits: ptediff t

Description
Settings . .

Dependencies
Command-Line Information
Recommended Settings

Largest atomic size: integer

Description
Settings . .
Tip

Dependencies
Command-Line Information
Recommended Settings

Largest atomic size: floating-point

Description
Settings . .
Tip

Dependencies
Command-Line Information
Recommended Settings

Byte ordering
Description

2-38
2-38
2-39

2-40
2-40
2-40
2-40
2-40
2-40

2-42
2-42
2-42
2-42
2-42
2-42

2-44
2-44
2-44
2-44
2-44
2-44

2-46
2-46
2-46
2-46
2-47
2-47
2-47

2-48
2-48
2-48
2-48
2-48
2-48
2-49

2-50
2-50

Settings

Dependencies
Command-Line Information
Recommended Settings

Signed integer division roundsto
Description

Settings

Tips . ..

Dependency
Command-Line Information
Recommended settings

Shift right on a signed integer as arithmetic shift
Description

Settings

Tips . ..

Dependency
Command-Line Information
Recommended settings

Supportlonglong,
Description e

Settings

Tips . ..

Dependencies
Command-Line Information
Recommended Settings

Allowed unit systems
Description e

Settings

Tip

Command-Line Information

Units inconsistency messagesc.o.u...
Description e

Settings

Command-Line Information

Allow automatic unit conversions
Description

Settings

2-50
2-50
2-50
2-51

2-52
2-52
2-52
2-52
2-53
2-53
2-53

2-55
2-55
2-55
2-55
2-55
2-55
2-56

2-57
2-57
2-57
2-57
2-57
2-57
2-57

2-59
2-59
2-59
2-59
2-60

2-61
2-61
2-61
2-61

2-62

2-62
2-62

xi

xii

Contents

Command-Line Information

DatasetSignalFormat
Description
Settings i e

Tips

Command-Line Information
Recommended Settings

Enable live streaming of selected signals to Simulation Data

Inspector
Description e
Settingso v e

Tip

Command-Line Information
Recommended Settings

Array bounds exceeded
Description
Settings ..ot e

Tips

Command-Line Information
Recommended Settings

Model Verification block enabling
Description
Settings i e
Dependency
Command-Line Information
Recommended Settings

Check runtime output of execution context
Description
Settings . . .o i e

Tips

Dependency
Command-Line Information
Recommended Settings

Check undefined subsystem initial output
Description e
Settings i e

Tips

2-62

2-63
2-63
2-63
2-63
2-63
2-64

2-65
2-65
2-65
2-65
2-65
2-66

2-67
2-67
2-67
2-67
2-68
2-68

2-69
2-69
2-69
2-69
2-69
2-69

2-71
2-71
2-71
2-71
2-73
2-73
2-73

2-75
2-75
2-75
2-75

Dependency

Command-Line Information

Recommended Settings

Detect multiple driving blocks executing at the same time

St . .

Description

Settings
Tips
Dependency

Command-Line Information

Recommended Settings

Underspecified initialization detection

Description

Settings
Tipso
Dependencies

Command-Line Information

Recommended Settings

Solver data inconsistency
Description

Settings

Tips ..o oo

Command-Line Information

Recommended Settings

Block diagram contains disabled library links

Description

Settings
oD o

Command-Line Information

Recommended Settings

Block diagram contains parameterized library links

Description

Settings

Tipso

Command-Line Information

Recommended Settings

2-77
2-77
2-77

2-79
2-79
2-79
2-79
2-79
2-80
2-80

2-81
2-81
2-81
2-81
2-82
2-82
2-82

2-84
2-84
2-84
2-84
2-85
2-85

2-86
2-86
2-86
2-86
2-86
2-86

2-88
2-88
2-88
2-88
2-88
2-88

xiii

xiv

Contents

InitInArrayFormatMsg . .

Description

Settings
Tips ..o oo

Command-Line Information

Recommended Settings

Remove code from floating-point to integer conversions with

saturation that maps NaNtozero

Description

Settings
Tipso ...
Dependencies

Command-Line Information

Recommended Settings

Compiler optimization level

Description

Settings
Tips ... oo

Command-Line Information

Recommended Settings

Verbose accelerator builds

Description

Settings

Command-Line Information

Recommended Settings

Implement logic signals as Boolean data (vs. double)

Description

Settings
Tips
Dependencies

Command-Line Information

Recommended Settings

Block reduction

Description

Settings
Tipso

Command-Line Information

Recommended Settings

2-90
2-90
2-90
2-90
2-90
2-91

2-92
2-92
2-92
2-92
2-93
2-93
2-93

2-94
2-94
2-94
2-94
2-94
2-94

2-96
2-96
2-96
2-96
2-96

2-98
2-98
2-98
2-98
2-99
2-99
2-99

2-100
2-100
2-100
2-100
2-102
2-102

Conditional input branch execution

Description
Settings

Command-Line Information

Recommended Settings

Use memset to initialize floats and doubles to 0.0

Description
Settings
Dependency

Command-Line Information

Recommended Settings

Signal storage reuse
Description
Settings
Tipso

Dependencies

Command-Line Information

Recommended Settings

Enable local block outputs

Description
Settings
Tips ..o oo

Dependencies

Command-Line Information

Recommended Settings

Reuse local block outputs
Description
Settings

Dependencies

Command-Line Information

Recommended Settings

Eliminate superfluous local variables (Expression folding)

Description
Settings

Dependencies

Command-Line Information

Recommended Settings

2-103
2-103
2-103
2-103
2-103

2-105
2-105
2-105
2-105
2-105
2-106

2-107
2-107
2-107
2-107
2-108
2-108
2-108

2-109
2-109
2-109
2-109
2-109
2-109
2-110

2-111
2-111
2-111
2-111
2-111
2-111

2-113
2-113
2-113
2-113
2-113
2-113

Xv

xvi

Contents

Reuse global block outputs . .
Description
Settings ..o oot e
Dependencies

Command-Line Information

Recommended Settings

Optimize global data access
Description
Settings i e
Dependencies

Command-Line Information

Recommended Settings

Simplify array indexing
Description
Settings . .o vt
Dependencies

Command-Line Information

Recommended Settings

Ensure responsiveness
Description
Settings i

Command-Line Information

Recommended Settings

Compile-time recursion limit for MATLAB functions
Description
Settings v e

Command-Line Information

Enable run-time recursion for MATLAB functions

Description
Settings . .o vt

Command-Line Information

Dynamic memory allocation in MATLAB Function blocks

Description
Settings ..o oot e
Dependency
TIPS oot

Command-Line Information

2-115
2-115
2-115
2-115
2-115
2-115

2-117
2-117
2-117
2-117
2-117
2-117

2-119
2-119
2-119
2-119
2-119
2-120

2-121
2-121
2-121
2-121
2-121

2-123
2-123
2-123
2-123

2-124
2-124
2-124
2-124

2-125
2-125
2-125
2-125
2-125
2-126

Recommended Settings

Dynamic memory allocation threshold in MATLAB Function
blocks

Description

Settings . ..

Dependency

Command-Line Information
Recommended Settings

Echo expressions without semicolons

Description

Settings . . .
Tip

Command-Line Information
Recommended Settings

Ensure memory integrity

Description

Settings . ..
Tips

Command-Line Information
Recommended Settings

Generate typedefs for imported bus and enumeration

Y PeS . .

Description

Settings . ..
Tips

Command-Line Information

Simulation target build mode

Description

Settings . . .
Tips

Command-Line Information
Recommended Settings

Use local custom code settings (do not inherit from main

model)
Description

Settings . ..

Dependency

2-126

2-127
2-127
2-127
2-127
2-127
2-127

2-129
2-129
2-129
2-129
2-129
2-129

2-131
2-131
2-131
2-131
2-131
2-132

2-133
2-133
2-133
2-133
2-133

2-134
2-134
2-134
2-134
2-135
2-135

2-136
2-136
2-136
2-136

xvil

xviii

Contents

Command-Line Information
Recommended Settings

Allow symbolic dimension specification
Description
Settings i e
Command-Line Information
Recommended Settings

Perform inplace updates for Bus Assignment blocks
Description
Settings . ..o v e
Dependency
Command-Line Information
Recommended Settings

Reuse buffers for Data Store Read and Data Store Write
blocks e
Description e
Settings i e
Dependency
Command-Line Information
Recommended Settings

Optimize block operation order in the generated code . ..
Description
Settings o e
Dependency
Command-Line Information
Recommended Settings

2-136
2-136

2-138
2-138
2-138
2-138
2-138

2-140
2-140
2-140
2-140
2-140
2-140

2-142
2-142
2-142
2-142
2-142
2-142

2-144
2-144
2-144
2-144
2-144
2-144

Data Import/Export Parameters

3|

Model Configuration Parameters: Data Import/Export

Data Import/Export Overview
Configuration
TIPS e
To get helponanoption

3-4
3-4
3-4
3-4

Input e 3-5

Description e 3-5
SettINgS . .o 3-5
TIPS e 3-5
Command-Line Information 3-6
Recommended Settings 3-6
Initial state 3-7
Description 3-7
Settings . . oot e 3-7
TIPS .« e e 3-7
Command-Line Information 3-8
Recommended Settings 3-8
Time 3-10
Description 3-10
Settings . . o vt e 3-10
TIPS ot e 3-10
Command-Line Information 3-11
Recommended Settings 3-11
States 3-12
Description e 3-12
Settings i e 3-12
TIPS oo 3-12
Command-Line Information 3-13
Recommended Settings 3-13
Output e 3-14
Description 3-14
Settings . . oot e 3-14
TIPS oo e 3-14
Command-Line Information 3-15
Recommended Settings 3-15
Final states 3-16
Description e 3-16
SEttINgS . . . e e 3-16
TIPS e e 3-16
Command-Line Information 3-17
Recommended Settings 3-17

xix

XX

Contents

Format

Description

Settings
Tips ..o oo

Command-Line Information

Recommended Settings

Limit data points

Description

Settings
Tipso ...

Command-Line Information

Recommended Settings

Decimation

Description

Settings
Tips

Command-Line Information

Recommended Settings

Save complete SimState in final state

Description

Settings
Tips ..o oo
Dependencies

Command-Line Information

Recommended Settings

Signal logging

Description

Settings
Tips,
Dependencies

Command-Line Information

Recommended Settings

Data stores

Description

Settings
Tips ... oo

Command-Line Information

Recommended Settings

3-18
3-18
3-18
3-18
3-19
3-19

3-21
3-21
3-21
3-21
3-21
3-22

3-23
3-23
3-23
3-23
3-23
3-23

3-25
3-25
3-25
3-25
3-25
3-25
3-26

3-27
3-27
3-27
3-27
3-28
3-28
3-28

3-30
3-30
3-30
3-30
3-30
3-31

Log Dataset datato file

Description

Settings . ..
Tips

Command-Line Information
Recommended Settings

Output options
Description

Settings . ..
Tips

Dependencies
Command-Line Information
Recommended Settings

Refine factor ..

Description

Settings . . .
Tip

Dependency

Command-Line Information
Recommended Settings

Output times . .

Description

Settings . ..
Tips

Dependency

Command-Line Information
Recommended Settings

Single simulation output

Description

Settings . . .
Tips

Command-Line Information
Recommended Settings

Logging intervals

Description

Settings . ..
Tips

Dependency

3-32
3-32
3-32
3-32
3-33
3-33

3-35
3-35
3-35
3-35
3-35
3-36
3-36

3-37
3-37
3-37
3-37
3-37
3-37
3-37

3-39
3-39
3-39
3-39
3-39
3-40
3-40

3-41
3-41
3-41
3-41
3-41
3-42

3-43
3-43
3-43
3-43
3-44

xx1

xxii

Contents

4

Command-Line Information

Recommended Settings

Record logged workspace data in Simulation Data

Inspector

Description

Settings
Tip ...

Command-Line Information

Recommended Settings

Write streamed signals to workspace

Description

Settings
Tip ...

Command-Line Information

3-44
3-45

3-46
3-46
3-46
3-46
3-46
3-46

3-48
3-48
3-48
3-48
3-48

Optimization Parameters

Optimization Pane: General
Optimization Pane: General Tab Overview
TIPS e
To get helponanoption
Application lifespan (days)
Description
Settings . ..ot e
TIPS .« e e
Command-Line Information

Recommended Settings

Use division for fixed-point net slope computation

Description

Settings
Tips
Dependency

Command-Line Information

Recommended Settings

4-2

4-3
4-3
4-3

4-4
4-4
4-4
4-5
4-5

4-7
4-7
4-7
4-7
4-8
4-8
4-8

Use floating-point multiplication to handle net slope

COrrectionst 4-9
Description e 4-9
SettINgS . .o 4-9
TIPS e 4-9
Dependencies 4-9
Command-Line Information 4-9
Recommended Settings 4-10

Default for underspecified datatype 4-11
Description 4-11
Settings i e 4-11
TIPS oo e 4-11
Command-Line Information 4-11
Recommended Settings 4-11

Optimize using the specified minimum and maximum

values 4-13
Description e 4-13
Settings . .o oot e 4-13
TIPS oot e 4-13
Dependencies 4-15
Command-Line Information 4-15
Recommended Settings 4-15

Remove root level I/O zero initialization 4-16
Description 4-16
Settings i e 4-16
Dependencies 4-16
Command-Line Information 4-16
Recommended Settings 4-17

Remove internal data zero initialization 4-18
Description e 4-18
Settingso v e 4-18
Dependencies 4-18
Command-Line Information 4-19
Recommended Settings 4-19

Remove code from floating-point to integer conversions that

wraps out-of-range values 4-20
Description e 4-20
Settings ..ot e 4-20

xx1iii

xxiv

Contents

Tips . ..

Dependency
Command-Line Information
Recommended Settings

Remove code that protects against division arithmetic

exceptions

Description

Settings

Dependencies
Command-Line Information
Recommended Settings

4-20
4-21
4-21
4-21

4-22
4-22
4-22
4-22
4-22
4-23

Optimization Parameters: Signals and Parameters

3|

Optimization Pane: Signals and Parameters

Optimization Pane: Signals and Parameters Tab Overview .

Tips . ..

To get helponanoption

Default parameter behavior
Description e

Settings
Tips ...

Dependencies
Command-Line Information
Recommended Settings

Inline invariant signals
Description e

Settings

Dependencies
Command-Line Information
Recommended Settings

Use memcpy

for vector assignment

Description e

Settings

5-2

5-4
5-4
5-4

5-5
5-5
5-5
5-5
5-6
5-6
5-6

5-7
5-7
5-7
5-7

5-7
5-9

5-9
5-9

Dependencies

Command-Line Information
Recommended Settings
Memcpy threshold (bytes)
Description
Settingso i e
Dependencies
Command-Line Information
Recommended Settings
Pack Boolean data into bitfields
Description
Settings . . oot e
Dependencies
Command-Line Information
Recommended Settings
Bitfield declarator type specifier
Description
Settings ..ot e
D e e
Dependency
Command-Line Information
Recommended Settings
Loop unrolling threshold
Description
Settings i e
Dependency
Command-Line Information
Recommended Settings
Maximum stack size (bytes)
Description e
SettINgS . . . e
TIPS ot e
Command-Line Information
Recommended Settings
Pass reusable subsystem outputsas
Description
Settings i e

5-11
5-11
5-11
5-11
5-11
5-11

5-13
5-13
5-13
5-13
5-13
5-14

5-15
5-15
5-15
5-15
5-15
5-15
5-16

5-17
5-17
5-17
5-17
5-17
5-17

5-19
5-19
5-19
5-19
5-20
5-20

5-21

5-21
5-21

XXV

xxvi

Contents

Dependencies
Command-Line Information
Recommended Settings

Parameter structure
Description
Settingso i e
Dependencies
Command-Line Information
Recommended Settings

Model Parameter Configuration Dialog Box
Source list
Refresh list
Addtotable

New

Storage class e
Storage type qualifier

5-21
5-21
5-22

5-23
5-23
5-23
5-23
5-23
5-24

5-25
5-26
5-26
5-26
5-26
5-26
5-26

Optimization Parameters: Stateflow

6/

Optimization Pane: Stateflow

Optimization Pane: Stateflow Tab Overview

Tips

To get helponanoption

Use bitsets for storing state configuration
Description e
Settings . . ot

Tips

Dependency
Command-Line Information
Recommended Settings

Use bitsets for storing Booleandata
Description e
SEttINgS . . . e

Tips

6-2

6-3
6-3
6-3

6-4
6-4
6-4
6-4
6-4
6-5
6-5

6-6
6-6

6-6

Dependency 6-6

Command-Line Information 6-6
Recommended Settings 6-7
Base storage type for automatically created enumerations . 6-8
Description 6-8
Settings i e 6-8
TIPS .« e e 6-8
Dependency 6-8
Command-Line Information 6-9

Diagnostics Parameters: Compatibility

7]

Model Configuration Parameters: Compatibility

Diagnostics e 7-2
Compatibility Diagnostics Overview 7-3
Configuration 7-3

TIPS e 7-3

To get helponanoption 7-3
S-function upgrades needed 7-4
Description e 7-4
SettIngs . .o e 7-4
Command-Line Information 7-4
Recommended Settings 7-4
Block behavior depends on frame status of signal 7-6
Description 7-6
Settings . . oot e 7-6

TIPS .« e e 7-7
Command-Line Information 7-7
Recommended Settings 7-7
SimState object from earlier release 7-8
Description e 7-8
SettingsS . . oot e 7-8
Command-Line Information 7-8
Recommended Settings 7-8

xxvii

xxviii

Diagnostics Parameters: Connectivity

8

Contents

Model Configuration Parameters: Connectivity

Diagnostics e 8-2
Connectivity Diagnostics Overview 8-4
Configuration 8-4

TIPS oo 8-4

To get helponanoption 8-4
Signal label mismatch 8-5
Description e 8-5
SEttINgS . . . 8-5
Command-Line Information 8-5
Recommended Settings 8-5
Unconnected block input ports 8-7
Description 8-7
Settingsot e 8-7
Command-Line Information 8-7
Recommended Settings 8-7
Unconnected block output ports 8-9
Description e 8-9
Settings . . oot 8-9
Command-Line Information 8-9
Recommended Settings 8-9
Unconnected line 8-11
Description e 8-11
SEttINgS . . . e e 8-11
Command-Line Information 8-11
Recommended Settings 8-11
Unspecified bus object at root Outport block 8-13
Description 8-13
Settings i e 8-13
Command-Line Information 8-13
Recommended Settings 8-13

Element name mismatch 8-15

Description 8-15
Settings ..ot 8-15
TIPS ot e 8-15
Command-Line Information 8-15
Recommended Settings 8-15
Bus signal treated as vector 8-17
Description 8-17
Settings v e 8-17
TIPS .« e 8-17
Command-Line Information 8-18
Recommended Settings 8-18
Non-bus signals treated as bus signals 8-20
Description 8-20
Settings . . o vt e 8-20
Command-Line Information 8-20
Recommended Settings 8-20
Repair bus selections 8-22
Description e 8-22
Settings ..o .t 8-22
Command-Line Information 8-22
Recommended Settings 8-22
Invalid function-call connection 8-24
Description 8-24
Settings i e 8-24
TIPS .« 8-24
Command-Line Information 8-24
Recommended Settings 8-25
Context-dependent inputs 8-26
Description e 8-26
Settings . .o oot e 8-26
TIPS oot e 8-26
Command-Line Information 8-26
Recommended Settings 8-27

xxix

XXX

Contents

Diagnostics Parameters: Data Validity

9

Model Configuration Parameters: Data Validity

Diagnostics e 9-2
Data Validity Diagnostics Overview 9-5
Configuration 9-5

TIPS oo 9-5

To get helponanoption 9-5
Signal resolution 9-6
Description e 9-6
SEttINgS . . . 9-6

TIPS oo 9-6
Command-Line Information 9-7
Recommended Settings 9-7
Division by singular matrix 9-9
Description 9-9
Settingsot e 9-9

TIPS .« e 9-9
Command-Line Information 9-9
Recommended Settings 9-10
Underspecified data types 9-11
Description 9-11
Identify and Resolve Underspecified Data Types 9-11
Settings . . o oo e 9-12
Command-Line Information 9-12
Recommended Settings 9-12
Simulation range checking 9-14
Description e 9-14
Settings ..ot 9-14

TIPS ot e 9-14
Command-Line Information 9-14
Recommended Settings 9-15
Wraponoverflow 9-16
Description 9-16
Settings v e 9-16

Tips

Command-Line Information
Recommended Settings

Saturate on overflow
Description
Settingso i e

Tips

Command-Line Information
Recommended Settings

Inf or NaN block output
Description
Settings . . oot e

Tips

Command-Line Information
Recommended Settings

"rt" prefix for identifiers
Description
Settings ..ot e

Tips

Command-Line Information
Recommended Settings

Detect downcast
Description
Settings i e

Tips

Command-Line Information
Recommended Settings

Detect overflow
Description e
Settings . .o oot e

Tips

Command-Line Information
Recommended Settings

Detect underflow
Description e
Settings i e

Tips

9-16
9-17
9-17

9-18
9-18
9-18
9-18
9-18
9-18

9-20
9-20
9-20
9-20
9-21
9-21

9-22
9-22
9-22
9-22
9-22
9-22

9-24
9-24
9-24
9-24
9-24
9-24

9-26
9-26
9-26
9-26
9-27
9-27

9-28
9-28
9-28
9-28

xxx1

xxxii

Contents

Command-Line Information

Recommended Settings

Detect precision loss

Description
Settings
Tips

Command-Line Information

Recommended Settings

Detect loss of tunability .

Description
Settings
Tips

Command-Line Information

Recommended Settings

Detect read before write
Description
Settings

Command-Line Information

Recommended Settings

Detect write after read . .

Description
Settings

Command-Line Information

Recommended Settings

Detect write after write .
Description
Settings

Command-Line Information

Recommended Settings

Multitask data store
Description
Settings

Tips ... oo

Command-Line Information

Recommended Settings

9-28
9-28

9-30
9-30
9-30
9-30
9-31
9-31

9-32
9-32
9-32
9-32
9-32
9-33

9-34
9-34
9-34
9-35
9-35

9-36
9-36
9-36
9-37
9-37

9-38
9-38
9-38
9-39
9-39

9-40
9-40
9-40
9-40
9-40
9-41

Duplicate data store names 9-42

Description 9-42
Settings ..ot 9-42
I .ot e 9-42
Command-Line Information 9-42
Recommended Settings 9-42

Diagnostics Parameters: Model Referencing

10|

Model Configuration Parameters: Model Referencing

Diagnostics 10-2
Model Referencing Diagnostics Overview 10-4
Configuration 10-4

TIPS o e 10-4

To get helponanoption 10-4
Model block version mismatch 10-5
Description e 10-5
Settings . . o vt e 10-5

D e 10-5
Command-Line Information 10-5
Recommended Settings 10-5
Port and parameter mismatch 10-7
Description e 10-7
Settings ..ot e 10-7

TIPS oo 10-7
Command-Line Information 10-7
Recommended Settings 10-8
Invalid root Inport/Outport block connection 10-9
Description 10-9
Settings . . oot e 10-9

TIPS oot e 10-9
Command-Line Information 10-12
Recommended Settings 10-12

xxxiii

XxXxiv

Unsupported data logging 10-14

Description e 10-14
Settings ..o oot e 10-14
TIPS e 10-14
Command-Line Information 10-14
Recommended Settings 10-14

Diagnostics Parameters: Sample Time

11

Contents

Model Configuration Parameters: Sample Time

Diagnostics 11-2
Sample Time Diagnostics Overview 114
Configuration 114

TIPS oo e 11-4

To get helponanoption 114
Source block specifies -1 sample time 11-5
Description e 11-5
Settings . . o vt e 11-5

TIPS ot e 11-5
Command-Line Information 11-5
Recommended Settings 11-6
Multitask rate transition 11-7
Description e 11-7
Settings ..ot e 11-7

TIPS oo 11-7
Command-Line Information 11-7
Recommended Settings 11-7
Single task rate transition 11-9
Description 11-9
Settings . . oot e 11-9

TIPS oot e 11-9
Command-Line Information 11-9
Recommended Settings 11-9

Multitask conditionally executed subsystem 11-11

Description e 11-11
Settings ..o oot e 11-11
TIPS e 11-11
Command-Line Information 11-12
Recommended Settings 11-12
Tasks with equal priority 11-13
Description 11-13
Settings i e 11-13
TIPS .« e e 11-13
Command-Line Information 11-13
Recommended Settings 11-13

Enforce sample times specified by Signal Specification

blocks 11-15
Description e 11-15
Settings . .o vt 11-15
TIPS oo 11-15
Command-Line Information 11-15
Recommended Settings 11-16

Sample hit time adjusting 11-17
Description e 11-17
Settings i e 11-17
TIPS e 11-17
Command-Line Information 11-17
Recommended Settings 11-18

Unspecified inheritability of sample time 11-19
Description e 11-19
Settings . ..o i e 11-19
TIPS oo 11-19
Command-Line Information 11-19
Recommended Settings 11-20

Diagnostics Parameters

12|

Model Configuration Parameters: Diagnostics 12-2

XXXV

XxXxVvi

Contents

Solver Diagnostics Overview
Configuration

TIPS ot

To get helponanoption

Algebraic loop

Description
Settings i e
TIPS .« e
Command-Line Information
Recommended Settings
Minimize algebraicloop
Description e
Settings . . oot e
TIPS oot e
Command-Line Information
Recommended Settings
Block priority violation
Description
Settings ..o oot e
TIPS ot
Command-Line Information
Recommended Settings
Min step size violation
Description
Settings v e
TIPS oo
Command-Line Information
Recommended Settings
Consecutive zero-crossings violation
Description e
Settings . . v vt
TIPS oo
Dependency
Command-Line Information
Recommended Settings
Automatic solver parameter selection
Description e

12-4
12-4
12-4
12-4

12-5
12-5
12-5
12-5
12-6
12-6

12-7
12-7
12-7
12-7
12-7
12-8

12-9
12-9
12-9
12-9
12-9
12-10

12-11
12-11
12-11
12-11
12-11
12-11

12-13
12-13
12-13
12-13
12-13
12-13
12-14

12-15
12-15

Settings i e 12-15

TIPS e 12-15
Command-Line Information 12-15
Recommended Settings 12-16
Extraneous discrete derivative signals 12-17
Description 12-17
Settings i e 12-17
TIPS .« e e 12-17
Dependency 12-18
Command-Line Information 12-18
Recommended Settings 12-18
State name clash 12-19
Description e 12-19
Settings . .o vt 12-19
TIPS oo 12-19
Command-Line Information 12-19
Recommended Settings 12-19
SimState interface checksum mismatch 12-21
Description e 12-21
Settings i 12-21
Command-Line Information 12-21
Recommended Settings 12-21

Diagnostics Parameters: Stateflow

13|

Model Configuration Parameters: Stateflow Diagnostics . . 13-2
Stateflow Diagnostics Overview 13-5
Configuration 13-5
TIPS oo e 13-5
To get helponanoption 13-5
Unused data, events, messages, and functions 13-6
Description e 13-6
SettINgS . . . e 13-6
D e e 13-6

xxxvii

xxxviii

Contents

Command-Line Information
Recommended Settings

Unexpected backtracking

Description
Settings . .

5

Command-Line Information
Recommended Settings

Invalid input data access in chart initialization

Description
Settings . .
Tip

Command-Line Information
Recommended Settings

No unconditional default transitions

Description
Settings . .

Command-Line Information
Recommended Settings

Transition outside natural parent

Description
Settings . .

Command-Line Information
Recommended Settings

Undirected event broadecasts

Description
Settings . .

Command-Line Information
Recommended Settings

Transition action specified before condition action

Description
Settings . .

Command-Line Information
Recommended Settings

Read-before-write to output in Moore chart

Description

13-6
13-7

13-8
13-8
13-8
13-8
13-8
13-9

13-10
13-10
13-10
13-10
13-10
13-11

13-12
13-12
13-12
13-12
13-12

13-14
13-14
13-14
13-14
13-14

13-16
13-16
13-16
13-16
13-16

13-18
13-18
13-18
13-18
13-18

13-20
13-20

Settings i e
Command-Line Information
Recommended Settings

Absolute time temporal value shorter than sampling

period
Description
Settings v e
Command-Line Information
Recommended Settings

Self transition on leaf state
Description
Settings . ..o i e
Command-Line Information
Recommended Settings

Execute-at-Initialization disabled in presence of input

EVEeNLS
Description e
Settings i e
Command-Line Information
Recommended Settings

Use of machine-parented data instead of Data Store

Memory e
Description
Settings i e
Command-Line Information
Recommended Settings

Unreachable execution path
Description e
Settings . ..o i e
Command-Line Information
Recommended Settings

13-20
13-20
13-20

13-22
13-22
13-22
13-22
13-22

13-24
13-24
13-24
13-24
13-24

13-26
13-26
13-26
13-26
13-26

13-28
13-28
13-28
13-28
13-28

13-30
13-30
13-31
13-31
13-31

XxXXix

x1

Contents

Diagnostics Parameters: Type Conversion

14

Model Configuration Parameters: Type Conversion

Diagnostics e 14-2
Type Conversion Diagnostics Overview 14-4
Configuration 14-4

TIPS oot e 14-4

To get helponanoption 14-4
Unnecessary type conversions 14-5
Description e 14-5
SEttINgS . . . e 14-5
Command-Line Information 14-5
Recommended Settings 14-5
Vector/matrix block input conversion 14-7
Description 14-7
Settings i e 14-7

TIPS .« e 14-7
Command-Line Information 14-7
Recommended Settings 14-8
32-bit integer to single precision float conversion 14-9
Description e 14-9
Settings v e 14-9

D e 14-9
Command-Line Information 14-9
Recommended Settings 14-9
Detect underflow 14-11
Description e 14-11
Settings ..o .ot e 14-11

TIPS oo e 14-11
Dependency 14-11
Command-Line Information 14-12
Recommended Settings 14-12
Detect precision loss 14-13
Description 14-13
Settings v e 14-13

Tipso
Dependency

Command-Line Information

Recommended Settings

Detect overflow
Description
Settings
Tips
Dependency

Command-Line Information

Recommended Settings

14-13
14-13
14-13
14-14

14-15
14-15
14-15
14-15
14-15
14-16
14-16

Model Referencing Parameters

15

Model Configuration Parameters: Model Referencing

Model Referencing Pane Overview

Configuration
Tips

To get helponanoption

Rebuild
Description

Settings ..ot e
Definitions

Tips
Dependency

Command-Line Information

Recommended Settings

Never rebuild diagnostic
Description
Settings

Tip
Dependency

Command-Line Information

Recommended Settings

15-2

15-4
15-4
15-4
15-4

15-5
15-5
15-5
15-6
15-7
15-13
15-13
15-14

15-15
15-15
15-15
15-15
15-16
15-16
15-16

xli

xlii

Contents

Enable parallel model reference builds

Description

Settings
Dependency

Tip ..o

Command-Line Information

Recommended Settings

MATLAB worker initialization for builds

Description

Settings
Limitation
Dependency

Command-Line Information

Recommended Settings

Enable strict scheduling checks for referenced export-

function models

Description

Settings

Command-Line Information

Total number of instances allowed per top model

Description

Settings

Command-Line Information

Recommended Settings

Pass fixed-size scalar root inputs by value for code

generation

Description

Settings
Tips ..o

Command-Line Information

Recommended Settings

Minimize algebraic loop occurrences

Description

Settings
Tips ..o oo

Command-Line Information

Recommended Settings

15-17
15-17
15-17
15-17
15-17
15-17
15-18

15-19
15-19
15-19
15-19
15-19
15-19
15-20

15-21
15-21
15-21
15-21

15-22
15-22
15-22
15-22
15-22

15-24
15-24
15-24
15-24
15-25
15-25

15-27
15-27
15-27
15-27
15-27
15-27

Propagate all signal labels out of the model

Description

Settings
Tips ..o oo
Command-Line Information

Recommended Settings

Propagate sizes of variable-size signals

Description

Settings
Command-Line Information

Recommended Settings

Model dependencies
Description

Settings
Tips ..o oo
Command-Line Information

Recommended Settings

15-29
15-29
15-29
15-29
15-31
15-31

15-33
15-33
15-33
15-34
15-34

15-35
15-35
15-35
15-36
15-36
15-37

Simulation Target Parameters

16|

Model Configuration Parameters: Simulation Target
Simulation Target: General Tab Overview
Configuration
D e
To get helponanoption
Parse custom code symbols
Description
Settings i e
Command-Line Information
Recommended Settings
Source file
Description
Settings . . oot

Command-Line Information

16-2

16-4
16-4
16-4
16-4

16-5
16-5
16-5
16-5
16-5

16-7
16-7
16-7
16-7

xliii

Recommended Settings 16-7

Header file 16-8
Description 16-8
Settings i e 16-8
TIPS .« e 16-8
Command-Line Information 16-8
Recommended Settings 16-8

Initialize function 16-10
Description 16-10
Settings . ..o v e 16-10
D e e 16-10
Command-Line Information 16-10
Recommended Settings 16-10

Terminate function 16-12
Description e 16-12
Settings i e 16-12
D e 16-12
Command-Line Information 16-12
Recommended Settings 16-12

Include directories 16-14
Description 16-14
Settings o e 16-14
Command-Line Information 16-14
Recommended Settings 16-15

Source files 16-16
Description e 16-16
Settings . . oot 16-16
Limitation 16-16
D e e 16-16
Command-Line Information 16-16
Recommended Settings 16-16

Libraries e 16-18
Description e 16-18
Settings i e 16-18
Limitation 16-18
4 15 16-18
Command-Line Information 16-18

xliv Contents

Recommended Settings 16-18

Reserved names 16-20
Description e 16-20
Settings i e 16-20
TIPS .« e e 16-20
Command-Line Information 16-20
Recommended Settings 16-21

Defines 16-22
Description 16-22
Settings . ..o v e 16-22
Command-Line Information 16-22
Recommended Settings 16-22

Solver Parameters

17

Solver Pane e 17-2
Solver Overviewt 17-6
Configuration 17-6
TIPS ot e 17-6
To get helponanoption 17-7
Start time e 17-8
Description 17-8
Settingso i e 17-8
Command-Line Information 17-8
Stop time e 17-9
Description 17-9
Settings v e 17-9
Command-Line Information 17-9
Type ..o e 17-10
Description e 17-10
SettINgS . .. e 17-10
Dependencies 17-10
Command-Line Information 17-11

xlv

xlvi

Contents

Solver ..

Description e
Settings ..o oot e

Tips

Dependencies
Command-Line Information

Max step size e
Description
Settings i e

Tips

Dependencies
Command-Line Information
Recommended Settings

Initial step size
Description e
Settings . . o vt

Tips

Dependencies
Command-Line Information
Recommended Settings

Min step size
Description e
Settings i e

Tips

Dependencies
Command-Line Information
Recommended Settings

Relative tolerance
Description e
Settings . ..o v e

Tips

Dependencies
Command-Line Information
Recommended Settings

Absolute tolerance
Description e
Settings ..o oot e

Tips

17-12
17-12
17-12
17-16
17-16
17-18

17-19
17-19
17-19
17-19
17-20
17-20
17-20

17-21
17-21
17-21
17-21
17-21
17-21
17-21

17-23
17-23
17-23
17-23
17-23
17-23
17-24

17-25
17-25
17-25
17-25
17-25
17-26
17-26

17-27
17-27
17-27
17-27

Dependencies 17-28

Command-Line Information for Configuration Parameters 17-28
Recommended Settings 17-28
Shape preservation 17-30
Description 17-30
Settings v e 17-30
TIPS .« e e 17-30
Dependencies 17-30
Command-Line Information 17-30
Recommended Settings 17-30
Maximum order it 17-32
Description e 17-32
Settings . ..ot e 17-32
TIPS oo e 17-32
Dependencies 17-32
Command-Line Information 17-33
Recommended Settings 17-33
Solver reset method 17-34
Description e 17-34
Settings i 17-34
TIPS e 17-34
Dependencies 17-34
Command-Line Information 17-34
Recommended Settings 17-35
Number of consecutive min steps 17-36
Description 17-36
Settings . ..o i e 17-36
Dependencies 17-36
Command-Line Information 17-36
Recommended Settings 17-36
Solver Jacobian Method 17-38
Description e 17-38
SettINgS . . . 17-38
TIPS e 17-38
Dependencies 17-38
Command-Line Information 17-38
Recommended Settings 17-38

xlvii

xlviii

Contents

Treat each discrete rate as a separatetask

Description

Settings ..o oot e
TIPS e
Dependency

Command-Line Information

Recommended Settings

Automatically handle rate transition for data transfer . .

Description

Settings v e
TIPS e e

Command-Line Information

Recommended Settings

Deterministic data transfer

Description

Dependencies

Command-Line Information

Recommended Settings

Higher priority value indicates higher task priority

Description

Settings i

Command-Line Information

Recommended Settings

Zero-crossing control

Description

Settings v e
TIPS oo e
Dependencies

Command-Line Information

Recommended Settings

Time tolerance

Description

SettINgS . . . e
TIPS e
Dependencies

Command-Line Information

Recommended Settings

17-40
17-40
17-40
17-40
17-41
17-41
17-41

17-42
17-42
17-42
17-42
17-43
17-43

17-44
17-44
17-44
17-45
17-45

17-46
17-46
17-46
17-46
17-46

17-48
17-48
17-48
17-48
17-48
17-49
17-49

17-50
17-50
17-50
17-51
17-51
17-51
17-51

Number of consecutive zero crossings
Description e
Settings ..o oot e

Tips

Dependencies
Command-Line Information
Recommended Settings

Algorithm
Description
Settings v e

Tips

Dependencies
Command-Line Information
Recommended Settings

Signal threshold
Description e
SettINgs . .. e

Tips

Dependency
Command-Line Information
Recommended Settings

Periodic sample time constraint
Description
Settingso e

Tips

Dependencies
Command-Line Information
Recommended Settings

Fixed-step size (fundamental sample time)
Description e
Settings . . .o i e
Dependencies
Command-Line Information
Recommended Settings

Sample time properties
Description e
Settings ..o oot e

Tips

17-53
17-53
17-53
17-53
17-53
17-53
17-54

17-55
17-55
17-55
17-55
17-55
17-55
17-56

17-57
17-57
17-57
17-57
17-57
17-57
17-58

17-59
17-59
17-59
17-60
17-60
17-60
17-61

17-62
17-62
17-62
17-63
17-63
17-63

17-64
17-64
17-64
17-65

xlix

1

Contents

18]

Dependencies 17-65
Command-Line Information 17-65
Extrapolationorder 17-67
Description 17-67
Settings i e 17-67

I .ot e 17-67
Dependencies 17-67
Command-Line Information 17-67
Recommended Settings 17-68
Number Newton's iterations 17-69
Description e 17-69
Settings . . oot e 17-69
Dependencies 17-69
Command-Line Information 17-69
Recommended Settings 17-69
Allow tasks to execute concurrently on target 17-71
Description e 17-71
Settings .. oot e 17-71
Command-Line Information 17-72
Recommended Settings 17-72
Library Browser

Use the Library Browser 18-2
Libraries Pane 18-2
Blocks Pane 18-3
Search for Blocks in the Library Browser 18-3
Library Browser Keyboard Shortcuts 18-5

Signal Properties Dialog Box

19

Signal Properties Dialog Box Overview 19-2
Signal Properties Controls 19-4
Signal name 19-4
Signal name must resolve to Simulink signal object 19-4
Show propagated signals 19-4
Logging and Accessibility Options 19-6
Logsignaldata 19-6
Test poInt i 19-6
Loggingname 19-6
Data 19-7
Code Generation Options 19-9
Signal object class 19-9
Storage class 19-9
Type qualifier 19-9
Data Transfer Options for Concurrent Execution 19-11
Specify data transfer settings 19-11
Data transfer handling option 19-11
Extrapolation method (continuous-time signals) 19-11
Initial condition 19-11
Documentation Options 19-13
Description e 19-13
Document link 19-13

Simulink Preferences Window

20|

Set Simulink Preferences 20-2
Simulink Preferences Window Overview 20-2
Simulink Preferences General Pane 20-3
Simulink General Preferences Overview 20-4

li

Folders for Generated Files 20-4

Simulation cache folder 20-5
Code generation folder 20-6
Background Color 20-7
Print 20-8
Export 20-9
Clipboard i 20-10
Warn when opening Model blocks with Normal Mode Visibility

settooff 20-11
Show callback tracing 20-12
Open the sample time legend when the sample time display is

changed 20-13

Simulink Preferences Model File Pane 20-14

Simulink Model File Preferences Overview 20-14
File format for new models and libraries 20-15
Save a thumbnail image inside SLX files 20-16
Change Notification 20-17
Updating or simulating the model 20-18
Action 20-19
First editing the model 20-20
Saving themodel 20-21
Autosave Options 20-22
Save before updating or simulating the model 20-23
Save backup when overwriting a file created in an older version

of Simulink 20-24
Notify when loading anold model 20-26
Do not load models created with a newer version of

Simulink, 20-27
Do not load models that are shadowed on the MATLAB

path ... e 20-28

Simulink Preferences Editor Pane 20-29

Simulink Editor Preferences Overview 20-14
Use classic diagram theme 20-29
Line crossing style 20-29
Scroll wheel controls zooming 20-29
Enable smart editing features 20-30
Edit key parameter when adding new blocks 20-30
Toolbar Configuration 20-30
File Toolbar i 20-30
Print 20-30
Cut/Copy/Paste 20-31
Undo/Redo i 20-31

lii Contents

Browse Back/Forward/Up 20-31

Library/Model Configuration/Model Explorer 20-31
Refresh Blocks 20-31
Update Diagram iiien.... 20-31
Simulation e 20-31
Fast Restart 20-31
Debug Model 20-31
Model AdVISOr it 20-32
Build e e 20-32
Find 20-32
Font Styles for Models 20-33
Font Styles Overview 20-33

Simulink Mask Editor

21

Mask Editor Overview 21-2
Icon & Ports Pane 21-3
Parameters & Dialog Pane 21-12
Initialization Pane 21-22
Documentation Pane 21-25
Additional Options 21-28

Dialog Control Operations 21-30
Moving dialog controls in the Dialogbox 21-30
Cut, Copy, and Paste Controls 21-31
Delete nodes 21-31
Error Display 21-31

DataTypeStr Parameter 21-34

Design a Mask Dialog Box using the Parameters & Dialog
Pane e 21-38

liii

liv

Contents

Concurrent Execution Window

22

Concurrent Execution Window: Main Pane
Concurrent Execution Window Overview
Enable explicit model partitioning for concurrent behavior .

Data Transfer Pane

Data Transfer Pane Overview

Periodic signals
Continuous signals
Extrapolation method . .

Automatically handle rate transition for data transfer

CPUPane
CPU Pane Overview . ..

Name e

Hardware Node Pane

Hardware Node Pane Overview
Name e

Clock Frequency [MHz] .
Color

Periodic Pane

Periodic Pane Overviewcoiiv....
Name
Periodic Trigger i

Color
Template

Task Pane
Task Pane Overview . ..

Name

Period
Color

Interrupt Pane
Interrupt Pane Overview

Name e

Color
Aperiodic trigger source

22-2
22-2
22-5

22-6
22-6
22-7
22-8
22-9
22-9

22-11
22-11
22-12

22-13
22-13
22-14
22-14
22-14

22-16
22-16
22-17
22-18
22-19
22-19

22-20
22-20
22-21
22-22
22-23

22-24
22-24
22-25
22-26
22-27

Signal number [2,SIGRTMAX-SIGRTMIN-1] 22-28

Eventname 22-29
System Tasks Pane 22-30
System Tasks Pane Overview 22-30
System Task Pane 22-31
System Task Pane Overview 22-31
Name e 22-32
Period e 22-33
Color .. e 22-34
System Interrupt Pane 22-35
System Interrupt Pane Overview 22-35
Name 22-36
Color ..o e 22-37
Profile Report Pane 22-38
Profile Report Pane Overview 22-38
Number of time steps 22-39

Simulink Simulation Stepper

23|

Simulation Stepping Options 23-2
Simulation Stepping Options Overview 23-2
Enable stepping back 23-4
Maximum number of saved back steps 23-5
Interval between stored back steps 23-6
Move back/forward by 23-7
Pause simulation when time reaches 23-8

Simulink Variant Manager

24

Variant Manager Overview 24-2
Variant Configuration Data 24-4

v

lvi

Contents

Model Hierarchy 0. i ..

Log

Configuration Parameters Dialog Box

+ “Configuration Parameters Dialog Box Overview” on page 1-2
+ “Model Configuration Pane” on page 1-5
+ “Hardware Implementation Pane” on page 1-8

* “Run on Target Hardware Pane” on page 1-122

1 Configuration Parameters Dialog Box

Configuration Parameters Dialog Box Overview

1-2

In this section...

“Commonly Used Parameters Tab” on page 1-2

“All Parameters Tab” on page 1-3

The Configuration Parameters dialog box specifies the settings for the active
configuration set of a model. The parameters in a configuration set determine the type of
solver used, import and export settings, and other values that determine how the model
runs. See Configuration Sets for more information.

Note You can also use the Model Explorer to modify any configuration set. See “Search
and Edit Using Model Explorer” for more information.

To open the dialog box, in the Simulink Editor, select Simulation > Model

Configuration Parameters, or click the Model Configuration Parameters button @ N

on the Simulink Editor toolbar. In the dialog box, you can view the configuration set in
either of two ways. The default Commonly Used Parameters tab displays commonly
used parameters by category. The All Parameters tab displays the complete list of user-
visible parameters in the configuration set. You can edit parameter values on either the
Commonly Used Parameters tab or the All Parameters tab.

Commonly Used Parameters Tab

The Commonly Used Parameters tab groups commonly used configuration
parameters into categories. To display the parameters for a specific category, click the
category in the Select tree on the left side of the dialog box.

Configuration Parameters Dialog Box Overview

25 Configuration Parameters: sldemo_fuelsys/Configuration (Active) EI@
* Cormmonly Used Parameters | = all Parameters
Select: Sirnulation time
Solver Start time: 0.0 Stop time: 2000
Data ImportExport
* Optimization Solver options i
> Diagnostics
Hardware Implementation Type: |Variable-step 7‘ Solver: Iode45 {Dormand-Prince) A
IModel Referencing
Sirnulation Target b additional options

> Code Generation

J (a4 H Cancel H Help Yalal

All Parameters Tab

The All Parameters tab includes all user-visible parameters in the configuration
set. This view groups the parameters for each category into the same groups used on
the Commonly Used Parameters tab. The Advanced Parameters group for each
category contains parameters only available on the All Parameters tab.

On this tab you can:

* Search for specific parameters or filter parameters by category.
+ Edit parameter values.
* View parameter dependencies by expanding the parameter description.

* Get parameter names that you can use in scripts from the Command-Line Name
column.

1 Configuration Parameters Dialog Box

You can also set each of the parameters in the Configuration Parameters dialog box
using the set_param command. The All Parameters tab displays the corresponding
command-line name for each parameter.

led Configuration Parameters: sldemo_fuelsys/Configuration (Active)

| * Commonly Used Parameters | = All Parameters

Category: Al | - jo

Parameter Value Command-Line Name

Solver » Simulation time o
Start time 0 StartTime U
Simulation start time. Mote that the values that you specify ...
Stop time 2000 StopTime
Simulation stop time.

Solver » Solver options
Type Variable-step - SolverType
Choose a variable or fixed-step solver.
Solver ode45 (Dormand-Prince) |+ Solver
Choose a solver.
Max step size auto MaxStep
Maximum step size for a variable-step solver.
Relative tolerance 165 RelTol
Specify the largest acceptable sclver ermor, relative to the si...
Min step size auto MinStep
Minimum step size for a variable-step solver.

J- oK] [Cancel] [Help Apply

1-4

Model Configuration Pane

Model Configuration Pane

In this section...

“Model Configuration Overview” on page 1-5
“Name” on page 1-6
“Description” on page 1-7

“Configuration Parameters (All Parameters Tab Only)” on page 1-7

Model Configuration Overview
View or edit the name and description of your configuration set.
In the Model Explorer you can edit the name and description of your configuration sets.

In the Model Explorer or Simulink Preferences window you can edit the description

of your template configuration set, Model Configuration Preferences. Go to the Model
Configuration Preferences to edit the template Configuration Parameters to be used as
defaults for new models.

When editing the Model Configuration preferences, you can click Restore to Default
Preferences to restore the default configuration settings for creating new models. These
underlying defaults cannot be changed.

1-5

1 Configuration Parameters Dialog Box

Name
Specify the name of your configuration set.
Settings

Default: Configuration (for Active configuration set) or Configuration
Preferences (for default configuration set).

Edit the name of your configuration set.

In the Model Configuration Preferences, the name of the default configuration is always
Configuration Preferences, and cannot be changed.

1-6

Model Configuration Pane

Description

Specify a description of your configuration set.
Settings

No Default

Enter text to describe your configuration set.

Configuration Parameters (All Parameters Tab Only)

No further help documentation is available for this parameter.

1-7

1 Configuration Parameters Dialog Box

Hardware Implementation Pane

1-8

& Configuration Parameters: untitled/Configuration (Active) EI@
“ Commonly Used Parameters = All Parameters |
Selec; Hardware board: [Arduino Pro ']
Solver
Data Import/Export Code Generation system target file: ert.tlc
» Optimization
. Diagnostics Device vendor: | Atmel Device type: |AVR
Hardware Implementation }» Device details 3
Model Referencing
Simulation Target Hardware board settings
» Code Generation
» Coverage Target Hardware Resources
> HDL Code Generation
Groups Build action:
Build options
e b | i
Qvern Build options
Analog input channel properties
Serial port properties
External mode
J OK] [Cancel] [Help] [Apply

In this section...

“Hardware Implementation Overview” on page 1-12
“Hardware board” on page 1-13

“Code Generation system target file” on page 1-15
“Device vendor” on page 1-16

“SPI0 CEO Bus Speed (kHz)” on page 1-18

“SPI0 CE1 Bus Speed (kHz)” on page 1-19

“Run external mode in a background” on page 1-20
“Enable External mode” on page 1-21

“Digital output to set on overrun” on page 1-22

Hardware Implementation Pane

In this section...

“Connection type” on page 1-23

“Device ID” on page 1-24

“IP address” on page 1-25

“Device type” on page 1-26

“Device details” on page 1-39

“Number of bits: char” on page 1-40

“Number of bits: short” on page 1-42

“Number of bits: int” on page 1-44

“Number of bits: long” on page 1-46

“Number of bits: long long” on page 1-48
“Number of bits: float” on page 1-50

“Number of bits: double” on page 1-51

“Number of bits: native” on page 1-52

“Number of bits: pointer” on page 1-54

“Number of bits: size_t” on page 1-56

“Number of bits: ptrdiff t” on page 1-58
“Largest atomic size: integer” on page 1-60
“Largest atomic size: floating-point” on page 1-62
“Byte ordering” on page 1-64

“Signed integer division rounds to” on page 1-66
“Shift right on a signed integer as arithmetic shift” on page 1-69
“Support long long” on page 1-71

“Device vendor” on page 1-73

“Device type” on page 1-75

“Base Rate Task Priority” on page 1-87

“Detect task overruns” on page 1-88

“Device Address” on page 1-89

“Username” on page 1-90

“Password” on page 1-91

1-9

1 Configuration Parameters Dialog Box

1-10

In this section...

“Build action” on page 1-92

“Build directory” on page 1-93

“Set host COM port” on page 1-94

“Analog input reference voltage” on page 1-95

“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate” on page
1-96

“SPI clock out frequency (in MHz)” on page 1-97

“SPI mode” on page 1-98

“Bit order” on page 1-99

“Use static IP address and disable DHCP” on page 1-100
“IP address (Ethernet shield)” on page 1-101

“MAC address” on page 1-102

“Use static IP address and disable DHCP” on page 1-103
“Connection type” on page 1-104

“Device ID” on page 1-105

“IP address” on page 1-106

“IP address (WiFi shield)” on page 1-107

“Service set identifier (SSID)” on page 1-108

“WiF1i encryption” on page 1-109

“WEP key” on page 1-110

“WEP key index” on page 1-111

“WPA password” on page 1-112

“Connect to custom ThingSpeak server” on page 1-113
“Server IP address” on page 1-114

“Port” on page 1-115

“Communication interface” on page 1-116

“Device” on page 1-117

“Package name” on page 1-118

“Port” on page 1-119

Hardware Implementation Pane

In this section...

“Verbose” on page 1-120
“IP Address” on page 1-121

1-11

1 Configuration Parameters Dialog Box

1-12

Hardware Implementation Overview

Specify hardware options to simulate and generate code for models of computer-based
systems, such as embedded controllers.

Hardware Implementation pane parameters do not control hardware or compiler

behavior. The parameters describe hardware and compiler properties for the MATLAB®
software.

+ Specifying hardware characteristics enables simulation of the model to detect error
conditions that can arise when executing code, such as hardware overflow.

*+ MATLAB uses the information to generate code for the platform that runs as
efficiently as possible. MATLAB software also uses the information to give bit-true
agreement for the results of integer and fixed-point operations in simulation and
generated code.

See Also

* Hardware Implementation Options (Simulink Coder)
+ “Hardware Implementation Pane” on page 1-8

+ “Model Configuration Parameters: Advanced Parameters” on page 2-2

Hardware Implementation Pane

Hardware board
Select the hardware board upon which to run your model.

Changing this parameter updates the dialog box display so that it displays parameters
that are relevant to your hardware board.

To install support for a hardware board, start the Support Package Installer by selecting
Get Hardware Support Packages. Alternatively, in the MATLAB Command
Window, enter supportPackagelnstaller.

After installing support for a hardware board, reopen the Configuration Parameters
dialog box and select the hardware board.

Settings

Default: None if the specified system target file is ert.tlc, realtime.tlc, or
autosar.tlc. Otherwise, the default is Determine by Code Generation system
target file.

None

No hardware board is specified. The system target file specified for the model is
ert.tlc, realtime.tlc, or autosar.tlc.

Determine by Code Generation system target file
Specifies that the system target file setting determines the hardware board.
Get Hardware Support Packages

Invokes the Support Package Installer. After you install a hardware support package,
the list includes relevant hardware board names.

Hardware board name
Specifies the hardware board to use to implement the system this model represents.

Tips

* When you select a hardware board, parameters for board settings appear in the dialog
box display.
+ After you select a hardware board, you can select a device vendor and type.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

1-13

1 Configuration Parameters Dialog Box

When you select a hardware board, the selection potentially changes the Toolchain
parameter value and other configuration parameter values. For example, if you change
the hardware board selection to ARM Cortex-A9 (QEMU), the Toolchain parameter
value changes to a supported toolchain, such as Linaro Toolchain v4.8.

Command-Line Information
Parameter: HardwareBoard
Type: character array

Default: "Determine by Code Generation system target file"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Device type” on page 1-26
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

* “Hardware Implementation Pane” on page 1-8

1-14

Hardware Implementation Pane

Code Generation system target file

System target file that you select on the Code Generation pane.

1-15

1 Configuration Parameters Dialog Box

Device vendor

Select the manufacturer of the hardware board to use to implement the system that this
model represents.

Settings
Default: Intel

If you have installed target support packages, the list of settings can include additional

manufacturers.

- AMD

* ARM Compatible
+ Altera

+ Analog Devices
+ Atmel

* Freescale
+ Infineon

+ Intel

* Microchip
* NXP

* Renesas

* STMicroelectronics
+ Texas Instruments
+ ASIC/FPGA

+ Custom Processor

Tips

* The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate
the device vendor and device type values by using the characters ->. For example:
"Intel->x86-64 (Linux 64)".

+ If you have a Simulink Coder™ license and you want to add Device vendor and
Device type values to the default set, see “Register More Device Vendor and Device
Type Values” (Simulink Coder).

1-16

Hardware Implementation Pane

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Command-Line Information
Parameter: ProdHWDeviceType
Type: string

Value: any valid value (see tips)
Default: " Intel "

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Select your Device vendor and Device type

if they are available in the drop-down list. If
your Device vendor and Device type are not
available, set device-specific values by using
Custom Processor.

See Also

+ “Hardware board” on page 1-13

+ “Device type” on page 1-26

* Hardware Implementation Options (Simulink Coder)

+ Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-17

1 Configuration Parameters Dialog Box

SPIO CEO Bus Speed (kHz)

Select a value from the list of bus speed in kilo hertz to obtain an SPI bus speed for
channel 0.

1-18

Hardware Implementation Pane

SPIO CE1 Bus Speed (kHz)

Select a value from the list of bus speed in kilo hertz to obtain an SPI bus speed for
channel 1.

1-19

1 Configuration Parameters Dialog Box

Run external mode in a background

Select this check box to force the External mode engine to run the generated code in a
background task.

Make sure you do not select this option for a model that has very small time step or that
may encounter overruns as this may result in Simulink becoming nonresponsive.

1-20

Hardware Implementation Pane

Enable External mode

Enable External mode to tune and monitor a model while it runs on your hardware
board.

With External mode, changing a parameter value in the model on the host changes the
corresponding value in the model running on the hardware. Similarly, scopes in the
model display data from the model running on the hardware.

Enabling External mode adds a lightweight server to the model running on the hardware
board. This server increases the processing burden upon the hardware board, which can
result in an overrun condition. If you enable the Enable overrun detection check box,
and the software reports an overrun, consider disabling External mode.

Enabling the External mode parameter makes the following communication-related
parameters visible:

* Set host COM port LEGO® MINDSTORMS® NXT hardware and Arduino® Mega
2560 hardware

+ TCP/IP port (1024-65535) for BeagleBoard hardware

Enabling the External mode parameter disables the Enable communication
between two NXT bricks parameter LEGO MINDSTORMS NXT hardware.

Settings
Default: Disabled
Disabled

The model application does not support External mode.
Enabled

The model application supports External mode.

1-21

1 Configuration Parameters Dialog Box

Digital output to set on overrun

This parameter appears when the Hardware board parameter is set to an Arduino
hardware and the Enable overrun detection check box is selected.

Select the digital output pin the Arduino hardware uses to signal a task overrun.
Do not use a pin that is assigned to another block within the model.
Settings

Default: 13

1-22

Hardware Implementation Pane

Connection type

Select the connection type to connect between the host computer and the LEGOEV3
brick.

The connection types available are:
+ USB - This is the default option to connect your host computer with the EV3 brick

using a USB mini cable.

* Bluetooth - Use this option when you connect your host computer to the EV3 brick
using Bluetooth. EV3 has in-built bluetooth. The computer to which you want to
connect to needs a bluetooth module. If your computer does not have an in-built
bluetooth module, then use an external bluetooth dongle.

* WiFi - Use this option when you connect your host computer to the EV3 brick using
WiFi network connection.

* Ethernet - Use this option when you connect your host computer to the EV3 brick
using Ethernet connection.

1-23

1 Configuration Parameters Dialog Box

Device ID

Enter the device ID of the LEGOEV3 brick. You can use the EV3 Brick Interface to get
the Device ID from the Brick Info screen.

This parameter appears when you select Bluetooth, WiFi, or Ethernet option in
Connection type parameter.

1-24

Hardware Implementation Pane

IP address
Enter the IP address of the LEGOEVS3 brick.
You can use the EV3 Brick Interface to get the IP address from the Brick Info.

This parameter appears when you select WiFior Ethernet option in Connection type
parameter.

1-25

1 Configuration Parameters Dialog Box

Device type

Select the type of hardware to use to implement the system that this model represents.
Settings

Default: x86—-64 (Windows64)

If you have installed target support packages, the list of settings includes additional
types of hardware.

AMD® options:

+ Athlon 64

+ K5/K6/Athlon

+ x86-32 (Windows 32)
+ Xx86-64 (Linux 64)

+ x86-64 (Mac 0S X)

+ x86-64 (Windows64)

ARM" options:

* ARM 10

+ ARM 11

« ARM 7

+ ARM 8

* ARM 9

* ARM Cortex

Altera® options:

* SoC (ARM CortexA)

Analog Devices® options:

+ ADSP-CM40x (ARM Cortex-M)
+ Blackfin

* SHARC

+ TigerSHARC

1-26

Hardware Implementation Pane

Atmel® options:

AVR
AVR (32-bit)
AVR (8-bit)

Freescale™ options:

32-bit PowerPC
68332

68HCO8

68HC11
ColdFire
DSP563xx (16-bit mode)
HC(S)12
MPC52xx
MPC5500
MPC55xx

MPC5xx

MPC7xxx
MPC82xx
MPC83xx
MPC85xx
MPC86xx

MPC8xx

S08

S12x

StarCore

Infineon® options:

Cl6x, XC16x
TriCore

Intel® options:

1-27

1 Configuration Parameters Dialog Box

1-28

+ x86-32 (Windows32)
+ x86-64 (Linux 64)
+ x86-64 (Mac 0S X)
+ x86-64 (Windows64)

Microchip options:

+ PIC18
* dsPIC

NXP options:

+ Cortex—MO/MO+
+ Cortex-M3
+ Cortex—M4

Renesas® options:

+ Mi16C

+ M32C

* R8C/Tiny
* RH850

+ RL78

+ SH-2/3/74
+ V850

STMicroelectronics®:
* ST10/SuperlO
Texas Instruments™ options:

- C2000

+ C5000

+ C6000

+ MSP430

+ Stellaris Cortex—M3

Hardware Implementation Pane

TMS470
TMS570 Cortex—R4

ASIC/FPGA options:

ASIC/FPGA

Tips

Before you specify the device type, select the device vendor.

To view parameters for a device type, click the arrow button to the left of Device
details.

Selecting a device type specifies the hardware device to define system constraints:
+ Default hardware properties appear as the initial values.

* You cannot change parameters with only one possible value.

+ Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

AMD

Athlon |8 16 (32|64 |64 |64 |64 |64 |64 ChajNone|Little |Zero v O
64 Endias

K5/K6/ |8 16 |32 (32 |64 |32 |32 (32 |32 ChajNone|Little |Zero v]
Athlon Endias

x86-32 |8 16 (32 |32 |64 32 |32 32 |32 ChajFloat|Little |Zero v O
(Windows Endiai

1-29

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float

long
x86—64 |8 16 |32 |64 |64 |64 |64 |64 |64 Chat Float| Little | Zero v o
(Linux Endiai
64)
x86-64 |8 |16 |32 |64 |64 |64 |64 |64 |64 Chat Float| Little | Zero v m
(Mac 0OS Endiai
X)
x86-64 (8 |16 (32 (32|64 |64 |64 |64 |64 ChaiFloat| Little | Zero v m
(Windows Endiai
ARM Compatible
ARM 8 16 |32 |32 (64 |32 (32 |32 (32 Long Float| Little | Zero v |
7/8/9/10 Endiai
ARM 11 |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub]| Little | Zero v |
Endiai

ARM 8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub| Little | Zero v |
Cortex Endias
Altera
SoC 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little | Zero v |
(ARM Endiay
Cortex
A)
Analog Devices

1-30

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
ADSP- 8 16 |32 (32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v i
CM40x (AR Endiai
Cortex-
M)
Blackfin|8 16 |32 |32 (64 |32 (32 |32 (32 Long Doub| Little | Zero v |
Endiai
SHARC 32 |32 |32 |32 |64 (32 |32 |32 |32 LongDoub|Big |Zero v i
Endiai
TigerSHA[32 |32 |32 (32 |64 [32 |32 32 |32 Long Doubl| Little |Zero v o
Endiay
Atmel
AVR 8 |16 |16 |32 |64 |8 |16 |16 |16 ChatNone| Little | Zero v o
Endiay
AVR 8 |16 |32 (32|64 (32 |32 (32 (32 ChaiNone| Little | Zero v m
(32- Endiai
bit)
AVR (8- |8 16 |16 |32 |64 |16 |16 |16 |16 ChatNone|Little |Zero v |
bit) Endiai
Freescale
32-bit (8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub|Big |Zero v |
PowerPC Endiay
68332 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone|Big |Zero v o
Endiai

1-31

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
68HCO8 |8 16 |16 |32 |64 |8 |8 16 |8 ChaiNone|Big |Zero v o
Endiai
68HC11 |8 16 |16 |32 (64 |8 8 16 |16 ChaiNone|Big |Zero v |
Endiay
ColdFirel8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone|Big |Zero v o
Endiai
DSP563xx/8 |16 |16 (32 |64 (16 |16 (16 |16 ChaiNone| Little | Zero v m
(16-bit Endiai
mode)
DSP5685x| 8 16 |16 |32 |64 |16 |16 |16 |16 Chat Float| Little | Zero v o
Endiay
HC(S)12 |8 |16 |16 (32 |64 |16 |16 (16 |16 ChaiNone|Big |Zero v m
Endiai
MPC52xx,|8 16 |32 |32 (64 |32 (32 |32 (32 LongNone|Big |Zero v |
MPC5500, Endias
MPC55xx,
MPC5xx,
PC5xx,
MPC7xXX,
MPC82xx,
MPC83xx,
MPC86xx,
MPC8xx
MPC85xx |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub|Big |Zero v |
Endiai

1-32

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
S08 8 16 |16 |32 |64 |16 |16 |16 |16 ChalNone|Big |Zero v i
Endiai
S12x 8 16 |16 |32 |64 16 |16 16 |16 ChaiNone|Big |Zero v |
Endiay
StarCorel8 |16 (32 (32|64 |32 |32 |32 |32 ChaiNone| Little | Zero v m
Endiai
Infineon
Cl6x, 8 16 |16 |32 |64 16 |16 16 |16 ChaiNone|Little |Zero v]
XC16x Endiai
TriCore |8 |16 |32 (32 |64 |32 |32 |32 |32 ChaiNone| Little | Zero v m
Endiai
Intel
x86-32 |8 16 |32 |32 |64 |32 (32 |32 (32 Chat Float| Little | Zero v |
(Windows Endiay
x86—64 |8 |16 |32 |64 |64 |64 |64 |64 |64 ChajFloat|Little |Zero v m
(Linux Endiay
64)
x86—64 (8 |16 |32 |64 (64 |64 |64 |64 |64 ChaiFloat|Little | Zero v m
(Mac 0S Endiai
X)
x86—64 |8 16 |32 |32 |64 |64 |64 |64 |64 Chat Float| Little | Zero v o
(Windows Endiai
Microchip

1-33

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
P1C18 8 |16 |16 (32|64 (8 |8 24 |24 ChatNone| Little | Zero v m
Endiai
dsPIC 8 |16 |16 (32|64 (16 |16 (16 |16 ChajNone| Little |Zero v m
Endiay
NXP
Cortex— (8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v o
MO/MO+ Endiay
Cortex— (8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v o
M3 Endiay
Cortex— (8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v o
M4 Endiay
Renesas
M16C 8 |16 |16 (32|64 |16 |16 |16 |16 ChaiNone| Little | Zero v m
Endiai
M32C 8 16 |16 |32 |64 |16 |16 |16 |16 ChatNone| Little | Zero v o
Endiai
R8C/ 8 |16 |16 (32|64 (16 |16 |16 |16 ChajNone| Little |Zero v m
Tiny Endiay
RH850 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little | Zero v |
Endiay
RL78 8 |16 |16 |32 |64 |16 |16 |16 |16 ChajNone| Little |Zero v m
Endiai

1-34

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long

Device Number of bits Largest Byte |Round to [Shift |Long

vendor / atomic orderin right |long

Device size

fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float

long

SH-2/3/4(8 16 |32 |32 (64 |32 (32 |32 (32 ChalNone|Big |Zero v |
Endiay

V850 8 16 |32 |32 |64 32 |32 32 |32 ChaiNone|Little |Zero v m|
Endiay

STMicroelectronics

ST10/ 8 16 |16 |32 |64 16 |16 16 |16 ChaiNone|Little |Zero v O

Superl0 Endiay

Texas Instruments

C2000 16 |16 |16 |32 |64 16 |32 16 |16 Int |None|Little |Zero v]

Endiay

C5000 16 |16 |16 |32 |64 |16 |16 |16 |16 Int |None|Big |Zero v i
Endiai

C6000 8 |16 |32 (40 |64 (32 |32 (32 (32 Int |[None|Little |Zero v m
Endiai

MSP430 |8 16 |16 |32 |64 |16 |16 |16 |16 Chai None| Little |Zero v |
Endiay

Stellari|8 16 |32 |32 |6 32 (32 |32 (32 Long Doub| Little | Zero v |

Cortex— Endiai

M3

TMS470 |8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v o
Endiai

TMS570 |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub]| Little | Zero v |

Cortex— Endiai

R4

1-35

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long

Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float

long
ASIC/FPGA
ASIC/ NA |[NA [NA[NAINA [NA |[NA |NA |[NA |NA [NA |[NA |NA NA [NA
FPGA

* The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate
the device vendor and device type values by using the characters ->. For example:
"Intel->x86-64 (Linux 64)".

+ If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register More Device Vendor and Device
Type Values” (Simulink Coder).

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Menu options that are available in the menu depend on the Device vendor parameter
setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

* Number of bits: char

* Number of bits: short

* Number of bits: int

* Number of bits: long

+ Number of bits: long long

1-36

Hardware Implementation Pane

* Number of bits: float

* Number of bits: double

* Number of bits: native

* Number of bits: pointer

+ Largest atomic size: integer

+ Largest atomic size: floating-point

+ Byte ordering

+ Signed integer division rounds to

* Shift right on a signed integer as arithmetic shift
* Support long long

Whether you can modify the setting of a device-specific parameter varies according to
device type.

Command-Line Information

Parameter: ProdHWDeviceType

Type: string

Value: any valid value (see tips)

Default: " Intel->x86—-64 (Windows64)*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

* “Hardware board” on page 1-13

1-37

1 Configuration Parameters Dialog Box

* “Device vendor” on page 1-16
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-38

Hardware Implementation Pane

Device details

Click the arrow to list parameters for:

+ Data type bit specifications

+ Largest atomic sizes for integer and floating-point values
* Byte ordering

* What signed integer division rounds to

+ Whether signed integer as an arithmetic shift shifts right
* Whether there is support for the long long data type

1-39

1 Configuration Parameters Dialog Box

Number of bits: char

Describe the character bit length for the hardware.
Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerChar
Type: integer

Value: any valid value
Default: 8

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are

1-40

Hardware Implementation Pane

Application Setting

available in the drop-down list. If your Device
vendor and Device type are not available,
set device-specific values by using Custom
Processor.

See Also

Hardware Implementation Options (Simulink Coder)
Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

141

1 Configuration Parameters Dialog Box

Number of bits: short

Describe the data bit length for the hardware.
Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.

Tip

All values must be a multiple of 8.
Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerShort
Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are

1-42

Hardware Implementation Pane

Application Setting

available in the drop-down list. If your Device
vendor and Device type are not available,
set device-specific values by using Custom
Processor.

See Also

Hardware Implementation Options (Simulink Coder)
Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

1-43

1 Configuration Parameters Dialog Box

Number of bits: int

Describe the data integer bit length for the hardware.
Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerint
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are

1-44

Hardware Implementation Pane

Application Setting

available in the drop-down list. If your Device
vendor and Device type are not available,
set device-specific values by using Custom
Processor.

See Also

Hardware Implementation Options (Simulink Coder)
Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

1-45

1 Configuration Parameters Dialog Box

Number of bits: long

Describe the data bit lengths for the hardware.

Settings

Default: 32

Minimum: 32

Maximum: 128

Enter a value from 32 through 128.

Tip

All values must be a multiple of 8 and from 32 through 128.
Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLong
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are

1-46

Hardware Implementation Pane

Application Setting

available in the drop-down list. If your Device
vendor and Device type are not available,
set device-specific values by using Custom
Processor.

See Also

Hardware Implementation Options (Simulink Coder)
Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

1-47

1 Configuration Parameters Dialog Box

1-48

Number of bits: long long

Describe the length in bits of the C long long data type that the hardware supports.

Settings

Default: 64

Minimum: 64

Maximum: 128

The number of bits that represent the C long long data type.

Tips

Use the C long long data type only if your C compiler supports long long.

You can change the value of this parameter for custom targets only. For custom
targets, all values must be a multiple of 8 and be between 64 and 128.

Dependencies

Enable long long enables use of this parameter.

The value of this parameter must be greater than or equal to the value of Number of
bits: long.

Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLonglLong
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Hardware Implementation Pane

Application Setting

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

* “Support long long” on page 1-71
+ Hardware Implementation Options (Simulink Coder)
+ Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-49

1 Configuration Parameters Dialog Box

1-50

Number of bits: float

Describe the bit length of floating-point data for the hardware (read only).
Settings

Default: 32

Always equals 32.

Command-Line Information
Parameter: ProdBitPerFloat
Type: integer

Value: 32 (read-only)

Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

Hardware Implementation Pane

Number of bits: double

Describe the bit-length of double data for the hardware (read only).
Settings

Default: 64

Always equals 64.

Command-Line Information
Parameter: ProdBitPerDouble
Type: integer

Value: 64 (read only)

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

+ Hardware Implementation Options (Simulink Coder)
+ Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-51

1 Configuration Parameters Dialog Box

Number of bits: native

Describe the microprocessor native word size for the hardware.
Settings

Default: 64

Minimum: 8

Maximum: 64

Enter a value from 8 through 64.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdWordSize
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are

1-52

Hardware Implementation Pane

Application Setting

available in the drop-down list. If your Device
vendor and Device type are not available,
set device-specific values by using Custom
Processor.

See Also

Hardware Implementation Options (Simulink Coder)
Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

1-53

1 Configuration Parameters Dialog Box

1-54

Number of bits: pointer

Describe the bit-length of pointer data for the hardware.
Settings

Default: 64

Minimum: 8

Maximum: 64

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerPointer
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

Hardware Implementation Pane

See Also

Hardware Implementation Options (Simulink Coder)

Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

1-55

1 Configuration Parameters Dialog Box

1-56

Number of bits: size_t
Describe the bit-length of size_t data for the hardware.

If ProdEqTarget is on, an Embedded Coder® processor-in-the-loop (PIL) simulation
checks this setting with reference to the target hardware. If ProdEqTarget is off, the
PIL simulation checks the TargetBitPerSizeT setting.

Settings

Default: 64

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.
Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerSizeT
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

Hardware Implementation Pane

See Also

* Hardware Implementation Options (Simulink Coder)

Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Verification of Code Generation Assumptions” (Embedded Coder)

1-57

1 Configuration Parameters Dialog Box

1-58

Number of bits: ptrdiff_t
Describe the bit-length of ptrdifF_t data for the hardware.

If ProdEgTarget is on, an Embedded Coder processor-in-the-loop (PIL) simulation
checks this setting with reference to the target hardware. If ProdEqTarget is off, the
PIL simulation checks the TargetBitPerPtrDiFfT setting.

Settings

Default: 64

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.
Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerPtrDi ffT
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

Hardware Implementation Pane

See Also

* Hardware Implementation Options (Simulink Coder)

Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Verification of Code Generation Assumptions” (Embedded Coder)

1-59

1 Configuration Parameters Dialog Box

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the
hardware.

Settings
Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and
stored on the hardware.

Short

Specifies that short is the largest integer data type that can be atomically loaded
and stored on the hardware.

Int

Specifies that int is the largest integer data type that can be atomically loaded and
stored on the hardware.

Long

Specifies that long is the largest integer data type that can be atomically loaded and
stored on the hardware.

LongLong

Specifies that long long is the largest integer data type that can be atomically
loaded and stored on the hardware.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.
+ This parameter is enabled only if you can modify it for the selected hardware.

* You can set this parameter to LongLong only if the hardware supports the C long
long data type and you have selected Enable long long.

1-60

Hardware Implementation Pane

Command-Line Information

Parameter: ProdLargestAtomiclnteger

Type: string

Value: "Char® | "Short" | "Int" | "Long" | "LongLong"
Default: "Char*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

+ Hardware Implementation Options (Simulink Coder)
+ Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-61

1 Configuration Parameters Dialog Box

1-62

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on
the hardware.

Settings
Default: Float

Float

Specifies that Float is the largest floating-point data type that can be atomically
loaded and stored on the hardware.

Double

Specifies that double is the largest floating-point data type that can be atomically
loaded and stored on the hardware.

None
Specifies that there is no applicable setting or not to use this parameter in generating
multirate code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or

unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: ProdLargestAtomicFloat

Type: string

Value: "Float™ | "Double” | "None*
Default: "Float*”

Recommended Settings

Application Setting
Debugging No impact

Hardware Implementation Pane

Application Setting

Traceability No impact

Efficiency Target specific

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

+ Hardware Implementation Options (Simulink Coder)
+ Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-63

1 Configuration Parameters Dialog Box

Byte ordering

Describe the byte ordering for the hardware board.
Settings

Default: Little Endian

Unspecified

Specifies that the code determines the endianness of the hardware. This choice is the
least efficient.

Big Endian
The most significant byte appears first in the byte ordering.
Little Endian
The least significant byte appears first in the byte ordering.
Dependencies
+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.
+ This parameter is enabled only if you can modify it for the selected hardware.
Command-Line Information
Parameter: ProdEndianess
Type: string

Value: "Unspecified” | "LittleEndian” | "BigEndian*®
Default: “"Little Endian*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are

1-64

Hardware Implementation Pane

Application Setting

available in the drop-down list. If your Device
vendor and Device type are not available,
set device-specific values by using Custom
Processor.

See Also

Hardware Implementation Options (Simulink Coder)
Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

1-65

1 Configuration Parameters Dialog Box

Signed integer division rounds to

Describe how your compiler for the hardware rounds the result of dividing two signed
integers.

Settings
Default: Zero

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if
that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer
to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer
to negative infinity.

Tips

+ To simulate rounding behavior of the C compiler that you use to compile generated
code, use the Integer rounding mode parameter for blocks. This setting appears on
the Signal Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

* For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Rounding” (Fixed-Point Designer).

* For more information on how this parameter affects code generation, see Hardware
Implementation Options (Simulink Coder).

* This table lists the compiler behavior described by the options for this parameter.

N D Ideal N/D |Zero Floor Undefined
33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9

1-66

Hardware Implementation Pane

N D Ideal N/D |Zero Floor Undefined
-33 -4 8.25 8 8 8or9
Dependency

Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: ProdIntDivRoundTo

Type: string

Value: "Floor™ | "Zero™ | "Undefined”
Default: "Zero*

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-67

1 Configuration Parameters Dialog Box

1-68

Hardware Implementation Pane

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the hardware fills the sign bit in a right shift of a signed
integer.

Settings
Default: On

¥ On
Generates simple, efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.
I off
Generates fully portable but less efficient code to implement right arithmetic shifts.
Tips
* Select this parameter if the C compiler implements a signed integer right shift as an

arithmetic right shift.

* An arithmetic right shift fills bits vacated by the right shift with the value of the
most significant bit. The most significant bit indicates the sign of the number in twos
complement notation.

Dependency

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: ProdShiftRightintArith

Type: string

Value: "on® | "off*

Default: "on*

Recommended settings

Application Setting
Debugging No impact

1-69

1 Configuration Parameters Dialog Box

Application Setting

Traceability No impact

Efficiency On

Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

+ Hardware Implementation Options (Simulink Coder)
+ Specifying Production Hardware Characteristics (Simulink Coder)
+ “Hardware Implementation Pane” on page 1-8

1-70

Hardware Implementation Pane

Support long long

Specify that your C compiler supports the C long long data type. Most C99 compilers
support long long.

Settings
Default: Off

Y1 On

Enables use of C long long data type for simulation and code generation on the
hardware.

Off

Disables use of C long long data type for simulation or code generation on the
hardware.

Tips

* This parameter is enabled only if the selected hardware supports the C long long
data type.

+ If your compiler does not support C long long, do not select this parameter.
Dependencies
This parameter enables Number of bits: long long.

Command-Line Information
Parameter: ProdLonglLongMode
Type: string

Value: "on”" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

1-71

1 Configuration Parameters Dialog Box

Application Setting
Safety precaution No recommendation for simulation without code
generation.

For simulation with code generation, select your
Device vendor and Device type if they are
available in the drop-down list. If your Device
vendor and Device type are not available,

set device-specific values by using Custom
Processor.

See Also

+ “Number of bits: long long” on page 1-48
* Hardware Implementation Options (Simulink Coder)
* Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-72

Hardware Implementation Pane

Device vendor

Select the manufacturer of the hardware board to use to implement the test system that

this model represents.

Settings

Default: Intel

AMD

ARM Compatible
Altera

Analog Devices
Atmel
Freescale
Infineon

Intel
Microchip

NXP

Renesas

STMicroelectronics

Texas Instruments

ASIC/FPGA

Custom Processor

Tips

The Device vendor and Device type fields share the command-line parameter
TargetHWDeviceType. When specifying this parameter from the command line,
separate the device vendor and device type values by using the characters ->. For

example: " Intel->x86-64 (Linux 64)".

If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register More Device Vendor and Device

Type Values” (Simulink Coder).

1-73

1 Configuration Parameters Dialog Box

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Command-Line Information

Parameter: TargetHWDeviceType Vendor
Type: string

Value: any valid value (see tips)

Default: " Intel "

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

See Also

+ “Hardware board” on page 1-13

+ “Device type” on page 1-75

* Hardware Implementation Options (Simulink Coder)

+ Specifying Production Hardware Characteristics (Simulink Coder)

+ “Hardware Implementation Pane” on page 1-8

1-74

Hardware Implementation Pane

Device type

Select the type of hardware to use to implement the test system.
Settings

Default: x86—64 (Windows64)

AMD options:

+ Athlon 64

+ K5/K6/Athlon

+ x86-32 (Windows 32)
+ Xx86-64 (Linux 64)

+ Xx86-64 (Mac 0S X)

+ x86-64 (Windows64)

ARM options:

* ARM 10

+ ARM 11

« ARM 7

- ARM 8

* ARM 9

* ARM Cortex

Altera options:
* SoC (ARM CortexA)
Analog Devices options:

+ ADSP-CM40x (ARM Cortex-M)
+ Blackfin

* SHARC

* TigerSHARC

Atmel options:

+ AVR

1-75

1 Configuration Parameters Dialog Box

1-76

AVR (32-bit)
AVR (8-bit)

Freescale options:

32-bit PowerPC
68332

68HCO08

68HC11
ColdFire
DSP563xx (16-bit mode)
HC(S)12
MPC52xx
MPC5500
MPC55xx

MPC5xx

MPC7xxx
MPC82xx
MPC83xx
MPC85xx
MPC86xx

MPC8xx

S08

S12x

StarCore

Infineon options:

Clex, XCléx
TriCore

Intel options:

x86—32 (Windows32)
x86—64 (Linux 64)
x86—64 (Mac 0S X)

Hardware Implementation Pane

+ x86-64 (Windows64)
Microchip options:

+ PIC18
* dsPIC

NXP options:

+ Cortex-MO/MO+
+ Cortex-M3
+ Cortex—M4

Renesas options:

- M16C

+ M32C

+ R8C/Tiny
* RH850

* RL78

+ SH-2/3/4
+ V850

STMicroelectronics:
* ST10/SuperlO
Texas Instruments options:

+ C2000

+ C5000

+ C6000

+ MSP430

+ Stellaris Cortex—M3
+ TMS470

+ TMS570 Cortex—R4

ASIC/FPGA options:
+ ASIC/FPGA

1-77

1 Configuration Parameters Dialog Box

Tips
+ Before you specify the device type, select the device vendor.

+ Selecting a device type specifies the hardware device to define system constraints:

Default hardware properties appear in the dialog box display as the initial values.
* You cannot change parameters with only one possible value.

+ Parameters with more than one possible value provide a list of valid values.

This table lists values for each device type.

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic | orderin right |long
Device size
fype char|shor{int |lon¢long |nativ pointe size | ptrdiff |int |float

long

AMD
Athlon |8 |16 |32 |64 |64 |64 |64 |64 |64 ChatNone| Little | Zero v m
64 Endiai
K5/K6/ |8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little | Zero v o
Athlon Endiai
x86-32 |8 16 |32 |32 |64 |32 (32 |32 (32 Chat Float| Little | Zero v o
(Windows Endiai
x86—64 |8 16 |32 |64 |64 |64 |64 |64 |64 Chat Float| Little | Zero v o
(Linux Endiai
64)
x86-64 |8 |16 |32 |64 |64 |64 |64 |64 |64 ChaiFloat| Little | Zero v m
(Mac 0OS Endiay
X)
x86-64 (8 |16 |32 (32 |64 |64 |64 |64 |64 ChaiFloat| Little | Zero v m
(Windows Endiai

1-78

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
ARM Compatible
ARM 8 16 |32 |32 (64 |32 (32 |32 (32 Long Float| Little | Zero v |
7/8/9/10 Endiai
ARM 11 |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub| Little | Zero v |
Endiai
ARM 8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v |
Cortex Endiai
Altera
SoC 8 |16 |32 (32|64 (32 |32 (32 |32 ChaiNone| Little | Zero v m
(ARM Endiai
Cortex
A)
Analog Devices
ADSP- 8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v i
CM40x (AR Endiai
Cortex-
M)
Blackfin|8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub| Little | Zero v |
Endiai
SHARC 32 |32 |32 |32 |64 |32 (32 |32 (32 LongDoub|Big |Zero v i
Endiai
TigerSHA[32 |32 |32 (32 |64 [32 |32 32 |32 Long Doub| Little | Zero v o
Endiay
Atmel

1-79

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
AVR 8 |16 |16 (32|64 (8 |16 (16 |16 ChatNone| Little | Zero v m
Endiai
AVR 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little | Zero v |
(32- Endiay
bit)
AVR (8- |8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone|Little |Zero v |
bit) Endiai
Freescale
32-bit |8 16 |32 |32 |64 |32 (32 |32 (32 LongDoub|Big |Zero v |
PowerPC Endiay
68332 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone|Big |Zero v |
Endiay
68HCO8 |8 16 |16 |32 |64 |8 |8 16 |8 ChaiNone|Big |Zero v o
Endiai
68HC11 |8 16 |16 |32 |64 |8 |8 16 |16 ChaiNone|Big |Zero v |
Endiai
ColdFirel8 16 |32 |32 |64 |32 (32 |32 (32 ChalNone|Big |Zero v |
Endiai
DSP563xx| 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little | Zero v |
(16-bit Endiay
mode)
DSP5685x| 8 16 |16 |32 |64 |16 |16 16 |16 ChaiFloat| Little |Zero v i
Endiai

1-80

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
HC(S)12 |8 16 |16 |32 |64 |16 |16 |16 |16 ChalNone|Big |Zero v |
Endiai
MPC52xx,|8 16 |32 |32 |64 |32 (32 |32 (32 LongNone|Big |Zero v |
MPC5500, Endiay
MPC55xx,
MPC5xx,
PC5xx,
MPC7xxX,
MPC82xx,
MPC83xx,
MPC86xx,
MPC8xx
MPC85xx |8 16 |32 |32 |64 |32 (32 |32 (32 LongDoub|Big |Zero v |
Endiay
S08 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone|Big |Zero v o
Endiai
S12x 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone|Big |Zero v |
Endiai
StarCore{8 |16 (3232 |64 |32 (32 |32 |32 |ChajNonel|Little|Zero | |o
Endiai
Infineon
Cl6x, 8 16 |16 |32 |64 16 |16 16 |16 ChaiNone|Little |Zero v O
XC16x Endiai
TriCore |8 |16 |32 (32 |64 |32 |32 |32 |32 ChaiNone| Little |Zero v m
Endiai

1-81

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float

long
Intel
x86-32 (8 |16 |32 32|64 (32 (32 |32 |32 ChajFloat|Little |Zero v O
(Windows Endiai
x86-64 (8 |16 |32 |64 |64 |64 |64 |64 |64 ChajFloat|Little |Zero v O
(Linux Endiai
64)
x86—64 |8 16 |32 |64 |64 |64 |64 |64 |64 Chat Float| Little | Zero v o
(Mac 0S Endiai
X)
x86—64 (8 |16 |32 |32 (64 |64 |64 |64 |64 ChajFloat|Little |Zero v m
(Windows Endiai
Microchip
P1C18 8 |16 |16 32|64 |8 |8 24 |24 ChajNone| Little |Zero v m
Endiai
dsPIC 8 |16 |16 (32|64 (16 |16 |16 |16 ChajNone| Little |Zero v m
Endiay

NXP
Cortex— |8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v o
MO/MO+ Endiay
Cortex— (8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v o
M3 Endiay
Cortex— |8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v o
M4 Endiay

1-82

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
Renesas
M16C 8 |16 |16 (32|64 |16 |16 |16 |16 ChaiNone|Little | Zero v m
Endiai
M32C 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little |Zero v i
Endiai
R8C/ 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little | Zero v o
Tiny Endiay
RH850 |8 |16 |32 (32 (64 |32 [32 [32 [32 |Cha{Nonel|Little [Zero |v |o
Endiay
RL78 8 |16 |16 (32|64 (16 |16 (16 |16 ChaiNone| Little | Zero v m
Endiai
SH-2/3/4(8 16 |32 |32 (64 |32 (32 |32 (32 ChaiNone|Big |Zero v |
Endiai
V850 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little |Zero v i
Endiai
STMicroelectronics
ST10/ 8 |16 |16 (32|64 |16 |16 |16 |16 ChaiNone| Little | Zero v m
Superl0 Endiay
Texas Instruments
C2000 16 |16 |16 |32 |64 |16 |32 |16 |16 Int |None|Little |Zero v m
Endiai
C5000 16 |16 |16 (32 |64 |16 |16 |16 |16 Int |None|Big |Zero v |
Endiai

1-83

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
C6000 8 16 |32 |40 (64 |32 (32 |32 (32 Int |[None|Little |Zero v o
Endiai
MSP430 |8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little | Zero v |
Endiay
Stellari|8 16 |32 (32 |6 32 (32 |32 (32 LongDoub]| Little | Zero v |
Cortex— Endias
M3
TMS470 |8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v i
Endiai
TMS570 |8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v o
Cortex— Endiay
R4
ASIC/FPGA
ASIC/ NA |[NA [NAINAINA [NA |[NA |NA [NA |NA [NA |[NA |NA NA [NA
FPGA

1-84

The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter atth e command line, separate
the device vendor and device type values by using the characters ->. For example:
"Intel->x86-64 (Linux 64)".

If you have a Simulink Coder license and you want to add Device vendor and

Device type values to the default set, see “Register More Device Vendor and Device
Type Values” (Simulink Coder).

Hardware Implementation Pane

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

Number of bits: char

Number of bits: short

Number of bits: int

Number of bits: long

Number of bits: long long

Number of bits: float

Number of bits: double

Number of bits: native

Number of bits: pointer

Number of bits: size_t

Number of bits: ptrdiff t

Largest atomic size: integer
Largest atomic size: floating-point
Byte ordering

Signed integer division rounds to
Shift right on a signed integer as arithmetic shift
Support long long

Whether you can modify the value of a device-specific parameter varies according to the
device type.

Command-Line Information

Parameter: TargetHWDeviceType_ Type
Type: string

Value: any valid value (see tips)

Default: " Intel->x86-64 (Windows64) "

1-85

1 Configuration Parameters Dialog Box

1-86

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Hardware board” on page 1-13

+ “Device vendor” on page 1-73

* Hardware Implementation Options (Simulink Coder)

Specifying Production Hardware Characteristics (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

Hardware Implementation Pane

Base Rate Task Priority

This parameter sets the static priority of the base rate task. However, the changes that
you make in this parameter do not result in any functionality differences on the LEGO
MINDSTORMS EV3 brick.

Settings

Default: 40

1-87

1 Configuration Parameters Dialog Box

Detect task overruns

Detect when a task overrun occurs in a Simulink model running on the target hardware.
Indicate when an overrun has occurred.

A task overrun occurs if the target hardware is still performing one instance of a task
when the next instance of that task is scheduled to begin.

You can fix overruns by decreasing the frequency with which tasks are scheduled to run,
and by reducing the number or complexity of the tasks defined by your model.

If those solutions do not fix the task overrun condition, and you are using External mode,
consider disabling External mode.

Settings

Default: None

1-88

Hardware Implementation Pane

Device Address

Enter the IP address or host name of the hardware board.

When you use the Support Package Installer to update the firmware on the board, the
Support Package Installer automatically gets the value of the IP address from the board
and applies it to this parameter.

If you swap boards, or change the IP address of the board, get the value of the new IP
address and enter it here.

Settings

Default: 192.168.0.101

1-89

1 Configuration Parameters Dialog Box

Username

Enter the root user name for Linux"® running on the hardware board.

When you use the Support Package Installer to update the hardware board firmware,
the Support Package Installer automatically applies the value you entered there to this
parameter.

Settings
Default: pi

1-90

Hardware Implementation Pane

Password
Enter the root password for Linux running on the hardware board.

When you use the Support Package Installer to update the hardware board firmware,
the Support Package Installer automatically applies the value you entered there to this
parameter.

Settings

Default: raspberry

1-91

1 Configuration Parameters Dialog Box

Build action

Specify whether you want only build or build, load, and run actions during code
generation.

Settings
Default: Build, load and run

Build
Build the code during the build process.
Build, load and run

Build, load, and to run the generated code during the build process.

1-92

Hardware Implementation Pane

Build directory
Enter the build directory for Linux running on the hardware board.

When you use the Support Package Installer to update the hardware board firmware,
the Support Package Installer automatically applies the value you entered there to this
parameter.

Settings

Default: /home/pi

1-93

1 Configuration Parameters Dialog Box

1-94

Set host COM port

Automatically detect or manually set the COM port your host computer uses to
communicate with the hardware board.

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Warning: Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings
Default: Automatically
Automatically
Let the software determine which COM Port your host computer uses.

Manual ly
Select this option to display the COM port number parameter.

Hardware Implementation Pane

Analog input reference voltage
Set the reference voltage used to measure inputs to the ANALOG IN pins.

This parameter appears when the Target hardware parameter is set to Arduino Mega
2560 or Arduino Uno.

Warning: Only connect an external power source to AREF while this parameter is set to
External. Connecting an external power source to AREF while this parameter is set
to any other option exposes the internal voltage references to the external voltage. This
voltage difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages greater than 5 Volts.
Do not connect Arduino Due to voltages greater than 3.3 Volts.

Voltages greater than the specified limits can damage your Arduino hardware.

Settings
Default: Defaul t

Default

Use the default operating voltage of the board. For Arduino Uno and Arduino Mega
2560 the operating voltage is 5 Volts.

Internal (1.1 V)

Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.
Internal (2.56 V)

Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.
External

On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an external 0-5 volt
power supply connected to the AREF pin. This voltage should match the voltage of
the power supply connected to the Arduino hardware. If your application requires
low-noise measurements, use this option with a filtered power supply.

1-95

1 Configuration Parameters Dialog Box

1-96

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate

Set the baud rate of the serial port on the Arduino hardware.

If you set Set host COM port to Manual ly, then set Serial 0 baud rate as described in
the “Set the COM Port and Baud Rate Manually” topic.

For information on serial ports for different Arduino boards, see “Pin Mapping on
Arduino Blocks” (Simulink Support Package for Arduino Hardware).

Settings
Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
128000, 500000, 1000000

Hardware Implementation Pane

SPI clock out frequency (in MHz)

Select a value from the list of master clock frequency to obtain an SPI clock frequency.
Settings

Default: 4000

8000, 4000, 2000, 1000, 500, 250, 125

1-97

1 Configuration Parameters Dialog Box

SPI mode

Select an SPI mode for data transmission.
Settings
Default: Mode 0 - Clock Polarity 0, Clock Phase 0O

* Mode 0 - Clock Polarity 0, Clock Phase 0
* Mode 1 - Clock Polarity O, Clock Phase 1
* Mode 2 - Clock Polarity 1, Clock Phase 0O
* Mode 3- Clock Polarity 1, Clock Phase 1

1-98

Hardware Implementation Pane

Bit order

Select the bit order for transmissions.

MSB FTirst to send the most significant bit first for transmission or select LSB First to
send the least significant bit first for transmission.

Settings
Default: MSB first

+ MSB first - Send the most significant bit first for transmission.

+ LSB first - Send the least significant bit first for transmission.

1-99

1 Configuration Parameters Dialog Box

Use static IP address and disable DHCP

Select this check box to disable the DHCP. The static IP address provided is used for
setting up the ethernet connection

1-100

Hardware Implementation Pane

IP address (Ethernet shield)

Enter the IP address of the Arduino Ethernet shield.

1-101

1 Configuration Parameters Dialog Box

MAC address

Enter the machine address of the Arduino Ethernet shield.

1-102

Hardware Implementation Pane

Use static IP address and disable DHCP

Select this check box to disable the DHCP. The static IP address provided is used for
setting up the WiFi connection.

1-103

1 Configuration Parameters Dialog Box

Connection type

Enter the type of connection that should be used to download the executable from the
host machine to the LEGO MINDSTORMS EV3 brick.

1-104

Hardware Implementation Pane

Device ID

Enter the ID of the LEGO MINDSTORMS EV3 brick. You can find this information in
the ‘Brick Info’ pane of the LEGO MINDSTORMS EV3 brick.

1-105

1 Configuration Parameters Dialog Box

IP address

Enter the IP address of the LEGO MINDSTORMS EV3 brick..

1-106

Hardware Implementation Pane

IP address (WiFi shield)

Enter the IP address of the Arduino WiFi shield.

1-107

1 Configuration Parameters Dialog Box

Service set identifier (SSID)

Enter the SSID of your network. An SSID is a unique ID consisting of 32 characters and
is used for naming wireless networks. An SSID ensures that the data you send over the
network reaches the correct destination.

1-108

Hardware Implementation Pane

WiFi encryption

The WiFi encryption of the network you connect to.

Settings
Default: None

None

Network is not WiFi encrypted.
WPA

Network uses WPA WiFi encryption.
WEP

Network uses WEP WiFi encryption.

1-109

1 Configuration Parameters Dialog Box

WEP key
Enter the WEP key of the network.

This parameter appears only when you select WEP for the WiFi encryption parameter.

1-110

Hardware Implementation Pane

WEP key index
Enter the WEP key index of the WEP key.

This parameter appears only when you select WEP for the WiFi encryption parameter.

1-111

1 Configuration Parameters Dialog Box

WPA password
Enter the WPA password of the network.

This parameter appears only when you select WPA for the WiFi encryption parameter.

1-112

Hardware Implementation Pane

Connect to custom ThingSpeak server

Select this check box to connect to the custom ThingSpeak server. Otherwise, the
ThingSpeak block connects to the default address of 184.106.153.149 through port 80.

1-113

1 Configuration Parameters Dialog Box

Server IP address

Specify the IP address of the custom ThingSpeak server.

1-114

Hardware Implementation Pane

Port

Specify the port number through which the ThingSpeak block connects to the
ThingSpeak server.

1-115

1 Configuration Parameters Dialog Box

Communication interface

Use the ‘serial’ option to run your model in the External mode with serial
communication.

Settings

Default: Serial

+ Serial
- TCP/IP
- WiFi

1-116

Hardware Implementation Pane

Device

Select the device you are using. The list includes any devices that are connected to your
computer and turned on.

To see a device that was recently connected and turned on, click Refresh.
Settings

Default: No devices detected

1-117

1 Configuration Parameters Dialog Box

Package name

All Android applications have a full Java-language-style package name. The package
name should be unique. To avoid conflicts with other developers, use Internet domain
ownership, in the reverse order, as the basis for your package name. For example
com.mydomain.myappname.

Settings

Default: com_example

1-118

Hardware Implementation Pane

Port

Set the value of the TCP/IP or WiFi port number, from 1024 to 65535. External mode
uses this port for communications between the hardware board and host computer.

Settings

Default: 17725

1-119

1 Configuration Parameters Dialog Box

Verbose
Select this check box to view the External Mode execution progress and updates in the

Diagnostic Viewer or in the MATLAB Command Window. This parameter appears when
you select TCP/IP or WiFi for Communication interface.

1-120

Hardware Implementation Pane

IP Address

Enter the IP address of the LEGO MINDSTORMS EV3 brick.

1-121

1 Configuration Parameters Dialog Box

Run on Target Hardware Pane

1-122

\.s‘:o:. Configuration Parameters: untitled/Run on Hardware Configuration (Active) @
Select: Target hardware selection i
~Solver Target hardware: [LEGO MINDSTORMS NXT -]

ata Import/Export arget hardware:
+-Optimization)
I, - Host to target hardware connection
-Diagnostics
ardware Implementat... | connection type: |Bluetooth connection -]
odel Referencing
+-Simulation Target Device name:
+-Code Generation
“Run on Target Hardware Signal monitoring and parameter tuning
Enable External mode 3
Set host COM port: | Manually -
COM port number: 1
Overrun detection
Enable overrun detection
Communication between two NXT bricks
Enable communication between two NXT bricks
Bluetooth mode: | Master)
Slave Bluetooth address: 00:16:53:0f:0c:09

‘4 1 3

9 oK] [Cancel] [Help] [Apply

In this section...

“Hardware Implementation Pane Overview” on page 1-124
“Target hardware” on page 1-125

“External mode transport layer” on page 1-126

“Enable External mode” on page 1-127

“IP address” on page 1-128

“Base rate task priority” on page 1-129

“Connection type” on page 1-130

Run on Target Hardware Pane

In this section...

“Device name” on page 1-131

“TCP/IP port (1024-65535)” on page 1-132
“Enable overrun detection” on page 1-133
“Device” on page 1-117

“Package name” on page 1-135

“Digital output to set on overrun” on page 1-136
“Enable communication between two NXT bricks” on page 1-137
“Bluetooth mode” on page 1-138

“Slave Bluetooth address” on page 1-139

“Host name” on page 1-140

“User name” on page 1-141

“Password” on page 1-142

“Build directory” on page 1-143

“Set host COM port” on page 1-143

“COM port number” on page 1-144

“Analog input reference voltage” on page 1-144

“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate” on page
1-145

“IP address” on page 1-145

“MAC address” on page 1-145

“IP address” on page 1-146

“Service set identifier (SSID)” on page 1-146
“WiFi encryption” on page 1-146

“WPA password” on page 1-146

“WEP key” on page 1-146

“WEP key index” on page 1-146

1-123

1 Configuration Parameters Dialog Box

1-124

Hardware Implementation Pane Overview
Specify the options for creating and running applications on target hardware.

Configuration

To configure a Simulink model to run on the target hardware, select Simulation >
Model Configuration Parameters.

Diagram Analysis Code Tools Help

M @ ;ﬁa_ Update Diagram Ctrl+D
— & Model Configuration Pararmeters Ctrl+E
Mode r
Data Display r
1 In the Configuration Parameters dialog box, click Hardware Implementation.
2 Select the Hardware board to match your target hardware.
3 (Optional) Review and set the other parameters.
4 Apply the changes.

Tip

After configuring a Simulink model, you can reopen the configuration parameters dialog
box by selecting Simulation > Model Configuration Parameters.

Hs

@m Library Browser @ ~ lf] -
&= Model Explorer
7 Run on Target Hardware 4 Options...

Install/Update Support Package...
Update Firmware...

Run on Target Hardware Pane

Target hardware
Select the type of hardware upon which to run your model.

Changing this parameter updates the Configuration Parameters dialog so it only displays
parameters that are relevant to your target hardware.

To install support for target hardware, start Support Package Installer by selecting Get
more, or by entering supportPackagelnstaller in the MATLAB Command Window.

After installing support for your target hardware, reopen the Configuration Parameters
dialog and select your target hardware.

Settings
Default: None

None

This setting means your model has not been configured to run on target hardware.
Choose your target hardware from the list of options.

Get more...

Select this option to start Support Package Installer and install support for
additional hardware.

1-125

1 Configuration Parameters Dialog Box

External mode transport layer

Select the transport layer the External mode uses to communicate between the Arduino
hardware and the host computer:

serial uses the standard serial USB connection.

tcpip uses the Ethernet connection specified by the Ethernet shield properties.
wiFi uses the Wi-Fi connection specified by the WiFi shield properties.

1-126

Run on Target Hardware Pane

Enable External mode

Enable External mode to tune and monitor a model while it runs on your hardware
board.

With External mode, changing a parameter value in the model on the host changes the
corresponding value in the model running on the hardware. Similarly, scopes in the
model display data from the model running on the hardware.

Enabling External mode adds a lightweight server to the model running on the hardware
board. This server increases the processing burden upon the hardware board, which can
result in an overrun condition. If you enable the Enable overrun detection check box,
and the software reports an overrun, consider disabling External mode.

Enabling the External mode parameter makes the following communication-related
parameters visible:

+ Set host COM port LEGO MINDSTORMS NXT hardware and Arduino Mega 2560
hardware

+ TCP/IP port (1024-65535) for BeagleBoard hardware

Enabling the External mode parameter disables the Enable communication
between two NXT bricks parameter LEGO MINDSTORMS NXT hardware.

Settings
Default: Disabled
Disabled

The model application does not support External mode.
Enabled

The model application supports External mode.

1-127

1 Configuration Parameters Dialog Box

IP address

The IP address of the LEGO MINDSTORMS EV3 brick.

1-128

Run on Target Hardware Pane

Base rate task priority

The value in this parameter defines the priority of the base rate task. However, the
changes that you make in this parameter do not result in any functionality differences on
the LEGO MINDSTORMS EV3 brick.

1-129

1 Configuration Parameters Dialog Box

1-130

Connection type

Choose the connection Simulink uses to download your model from the host computer to
the NXT hardware.

Set up a USB or Bluetooth® connection before running the model on the NXT hardware.

Note: The NXT hardware always uses a Bluetooth connection for External mode
communications. The Connection type parameter does not affect External mode
communications.

Settings
Default: USB connection
USB connection
Use a USB connection to download a model to the NXT hardware.

Bluetooth connection

Use a Bluetooth connection to download a model to the NXT hardware.

Run on Target Hardware Pane

Device name

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT and the Connection type parameter is set to Bluetooth
connection.

While you are setting up a Bluetooth connection, get the name of the NXT hardware

in Windows® Devices and Printers and assign it to the Device name parameter.
For example, if the Windows device name is “myNXT”, enter myNXT for Device name
parameter in the Configuration Parameters dialog.

1-131

1 Configuration Parameters Dialog Box

TCP/IP port (1024-65535)

This parameter appears when the Hardware board setting supports External mode.

Set the value of the TCP/IP port number, from 1024 to 65535. External mode uses this
IP port for communications between the target hardware (hardware board) and host
computer.

Settings

Default: 17725

1-132

Run on Target Hardware Pane

Enable overrun detection

Detect when a task overruns occurs in a model running on the hardware board. Indicate
when an overrun has occurred.

A task overrun occurs if the hardware board is still performing one instance of a task
when the next instance of that task is scheduled to begin.

The “Detect and Fix Task Overruns” topics listed in the following “See Also” subtopic
describe how your hardware board indicates that an overrun has occurred.

You can fix overruns by decreasing the frequency with which tasks are scheduled to run,
and by reducing the number or complexity of the tasks defined by your model.

If those solutions do not fix the task overrun condition, and you are using External mode,
consider disabling External mode.

Settings
Default: Disabled
Disabled

Do not detect overruns.
Enabled

Detect overruns and generate an error message when an overrun occurs.

1-133

1 Configuration Parameters Dialog Box

Device

This parameter appears when the Hardware board parameter is set to your device
type, and Show advanced settings has been clicked.

Select the device you are using. The list includes any devices that are connected to your
computer and turned on.

To see a device that was recently connected and turned on, click Refresh. Refreshing the
parameters updates Device, Host name, and Package name parameter fields.

Settings

Default: None

1-134

Run on Target Hardware Pane

Package name

This parameter appears when the Hardware board parameter is set to one of the
Samsung Galaxy Android™ devices, and Show advanced settings has been clicked.

Update this value with a unique name. Refer to the Android Developer instructions
the package attribute in <manifest>. The package name uniquely identifies the
application you are creating, and determines the path names your application uses.

To avoid conflicts with apps created by other developers, use a domain name that you
own as the beginning of the package name. Reverse the order of the elements, like this:
com.mydomain.myappname.

Warning: Do not use com.example to publish applications (make the app publicly
available).

Settings

Default: com.example

1-135

1 Configuration Parameters Dialog Box

Digital output to set on overrun

This parameter appears when the Hardware board parameter is set to an Arduino
hardware and the Enable overrun detection check box is selected.

Select the digital output pin the Arduino hardware uses to signal a task overrun.
Do not use a pin that is assigned to another block within the model.
Settings

Default: 13

1-136

Run on Target Hardware Pane

Enable communication between two NXT bricks

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT.

You can enable direct Bluetooth communication between two NXT bricks. Enabling this
parameter makes the Bluetooth mode parameter appear.

Enabling the Enable communication between two NXT bricks parameter disables
External mode for LEGO MINDSTORMS NXT hardware.

Settings
Default: Disabled
Disabled

Disable communication between two NXT bricks.
Enabled

Enable direct Bluetooth communication between two NXT bricks.

1-137

1 Configuration Parameters Dialog Box

1-138

Bluetooth mode

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT.

If you enable the Enable communication between two NXT bricks parameter,
configure the Bluetooth device on one NXT brick to be a Bluetooth master or slave.

This parameter only applies to Bluetooth communications between two NXT bricks. It
does not apply to Bluetooth communications between the host computer and the NXT
brick.

Selecting Master makes the Bluetooth slave address parameter appear.
Settings
Default: Master

Master

The Bluetooth device on the NXT brick operates as a master. Selecting this option
enables the Slave Bluetooth address parameter.

Slave
The Bluetooth device on the NXT brick operates as a slave.

Run on Target Hardware Pane

Slave Bluetooth address

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT and the Bluetooth mode parameter is set to Master.

Enter the address of the slave Bluetooth device on other NXT brick.

1-139

1 Configuration Parameters Dialog Box

Host name

This parameter appears when the Hardware board requires a network connection to
load the model or application to the hardware.

When you use the Support Package Installer to update the firmware on the board, the
Support Package Installer automatically gets the value of the IP address from the board
and applies it to this parameter.

If you swap boards, or change the IP address of the board, get the value of the new IP
address and enter it here.

1-140

Run on Target Hardware Pane

User name

This parameter appears when the Hardware board parameter is set to BeagleBoard
or Raspberry Pi.

Enter the root user name for Linux running on the BeagleBoard or Raspberry Pi™
hardware.

When you use the Support Package Installer to update the BeagleBoard or Raspberry
Pi firmware, the Support Package Installer automatically applies the value you entered
there to this parameter.

Settings
BeagleBoard Default: ubuntu

Raspberry Pi Default: pi

1-141

1 Configuration Parameters Dialog Box

Password

This parameter appears when the Hardware board parameter is set to BeagleBoard
or Raspberry Pi.

Enter the root password for Linux running on the BeagleBoard or Raspberry Pi
hardware.

When you use the Support Package Installer to update the firmware on the BeagleBoard
or Raspberry Pi hardware, the Support Package Installer automatically applies the value
you entered there to this parameter.

Settings
BeagleBoard Default: temppwd

Raspberry Pi Default: raspberry

1-142

Run on Target Hardware Pane

Build directory

This parameter appears when the Hardware board parameter is set to BeagleBoard
or Raspberry Pi.

Enter the build directory for Linux running on the BeagleBoard or Raspberry Pi
hardware.

When you use the Support Package Installer to update the firmware on the BeagleBoard
or Raspberry Pi hardware, the Support Package Installer automatically applies the value
you entered there to this parameter.

Settings
BeagleBoard Default: /home/ubuntu

Raspberry Pi Default: /home/pi

Set host COM port

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Automatically detect or manually set the COM port your host computer uses to
communicate with the hardware board.

Warning: Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings
Default: Automatically

Automatically

Let the software determine which COM Port your host computer uses.
Manually

Select this option to display the COM port number parameter.

1-143

1 Configuration Parameters Dialog Box

1-144

COM port number

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno, and the Set host COM
port parameter is set to Manual ly.

Manually set the number of the COM Port the host computer uses to communicate with
the hardware board, and then enter it here.

Warning: Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings
Default: 0

Analog input reference voltage

This parameter appears when the Hardware board parameter is set to Arduino Mega
2560 or Arduino Uno.

Set the reference voltage used to measure inputs to the ANALOG IN pins.

Warning: Only connect an external power source to AREF while this parameter is set to
External. Connecting an external power source to AREF while this parameter is set
to any other option exposes the internal voltage references to the external voltage. This
voltage difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages greater than 5 Volts.
Do not connect Arduino Due to voltages greater than 3.3 Volts.

Voltages greater than the specified limits can damage your Arduino hardware.

Settings

Default: Default

Run on Target Hardware Pane

Default

Use the default operating voltage of the board. For Arduino Uno and Arduino Mega
2560 the operating voltage is 5 Volts.

Internal (1.1 V)

Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.
Internal (2.56 V)

Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.
External

On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an external 0-5 volt
power supply connected to the AREF pin. This voltage should match the voltage of
the power supply connected to the Arduino hardware. If your application requires
low-noise measurements, use this option with a filtered power supply.

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate
Set the baud rate of the serial port on the Arduino hardware.

If you set Set host COM port to Manual ly, then set Serial 0 baud rate as described in
the “Set the COM Port and Baud Rate Manually” topic.

For information on serial ports for different Arduino boards, see “Pin Mapping on
Arduino Blocks” (Simulink Support Package for Arduino Hardware).

Settings
Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
128000, 500000, 1000000

IP address

Enter the IP address of the Arduino Ethernet shield.

MAC address

Enter the machine address of the Arduino Ethernet shield.

1-145

1 Configuration Parameters Dialog Box

1-146

IP address
Enter the IP address of the Arduino WiFi shield.

Service set identifier (SSID)

Enter the SSID of your network. An SSID is a unique ID consisting of 32 characters and
is used for naming wireless networks. An SSID ensures that the data you send over the
network reaches the correct destination.

WiFi encryption

The WiFi encryption that is used in the network you connect to.

Settings

Default: None

None

Select this option when you connect to a network that is not WiFi encrypted.
WPA

Select this option when you connect to a network that uses WPA WiFi encryption.
WEP

Select this option when you connect to a network that uses WEP WiFi encryption.

WPA password

This parameter appears only when you select WPA option in the WiFi encryption
parameter. Enter the WPA password of the network.

WEP key

This parameter appears only when you select WEP option in the WiFi encryption
parameter. Enter the WEP key of the network.

WEP key index

This parameter appears only when you select WEP option in the WiFi encryption
parameter. Enter the WEP key index of the WEP key.

Simulink Configuration Parameters:
Advanced

2 Simulink Configuration Parameters: Advanced

Model Configuration Parameters: Advanced Parameters

2-2

Simulink provides advanced configuration parameters that appear only on the All
Parameters tab of the Configuration Parameters dialog box. To view these parameters,
on the All Parameters tab, search for Advanced Parameters.

In this section...

“Model Configuration Parameters for Hardware Implementation Advanced Parameters”
on page 2-2

“Model Configuration Parameters for Diagnostics Advanced Parameters” on page
2-4

“Model Configuration Parameters for Data Import/Export Advanced Parameters” on
page 2-5

“Model Configuration Parameters for Optimization Advanced Parameters” on page
2-5

“Model Configuration Parameters for Simulation Target Advanced Parameters” on page
2-7

Model Configuration Parameters for Hardware Implementation Advanced
Parameters

Parameter Description

“Test hardware is the same as production
hardware” on page 2-9

Specify whether the test hardware differs
from the production hardware.

“Test device vendor and type” on page
2-11

Select the manufacturer and type of the
hardware to use to test the code generated
from the model.

“Number of bits: char” on page 2-24

Describe the character bit length for the
hardware that you use to test code.

“Number of bits: short” on page 2-26

Describe the data bit length for the
hardware that you use to test code.

“Number of bits: int” on page 2-28

Describe the data integer bit length of the
hardware that you use to test code.

“Number of bits: long” on page 2-30

Describe the data bit lengths for the
hardware that you use to test code.

Model Configuration Parameters: Advanced Parameters

Parameter Description
“Number of bits: long long” on page Describe the length in bits of the C long
2-32 long data type that the test hardware

supports.

“Number of bits: float” on page 2-34

Describe the bit length of floating-point
data for the hardware that you use to test
code (read only).

“Number of bits: double” on page 2-36

Describe the bit-length of double data
for the hardware that you use to test code
(read only).

“Number of bits: native” on page 2-38

Describe the microprocessor native word
size for the hardware that you use to test
code.

“Number of bits: pointer” on page 2-40

Describe the bit-length of pointer data for
the hardware that you use to test code.

“Number of bits: size_t” on page 2-42

Describe the bit-length of size_t data for
the hardware that you use to test code.

“Number of bits: ptrdiff t” on page 2-44

Describe the bit-length of ptrdiff_t data
for the hardware that you use to test code.

“Largest atomic size: integer” on page
2-46

Specify the largest integer data type that
can be atomically loaded and stored on the
hardware that you use to test code.

“Largest atomic size: floating-point” on
page 2-48

Specify the largest floating-point data type
that can be atomically loaded and stored on
the hardware that you use to test code.

“Byte ordering” on page 2-50

Describe the byte ordering for the
hardware that you use to test code.

“Signed integer division rounds to” on page
2-52

Describe how your compiler for the test
hardware rounds the result of dividing two
signed integers.

“Shift right on a signed integer as
arithmetic shift” on page 2-55

Describe how your compiler for the test
hardware fills the sign bit in a right shift of
a signed integer.

2-3

2 Simulink Configuration Parameters: Advanced

2-4

Parameter

Description

“Support long long” on page 2-57

Specify that your C compiler supports the C
long long data type.

Model Configuration Parameters for Diagnostics Advanced Parameters

Parameter

Description

“Allow symbolic dimension specification” on
page 2-138

Specify whether Simulink propagates
dimension symbols throughout the model
and preserves these symbols in the
propagated signal dimensions.

“Allowed unit systems” on page 2-59

Specify unit systems allowed in the model.

“Units inconsistency messages” on page
2-61

Specify if unit inconsistencies should be
reported as warnings. Select the diagnostic
action to take when the Simulink software
detects unit inconsistencies.

“Allow automatic unit conversions” on page
2-62

Allow automatic unit conversions in the
model.

“Array bounds exceeded” on page 2-67

Enable live streaming of selected signals to
Simulation Data Inspector

“Model Verification block enabling” on page
2-69

Enable model verification blocks in the
current model either globally or locally.

“Check runtime output of execution
context” on page 2-71

Specify whether to display a warning if
Simulink software detects potential output
differences from previous releases.

“Check undefined subsystem initial output”
on page 2-75

Specify whether to display a warning if the
model contains a conditionally executed
subsystem in which a block with a specified
initial condition drives an Outport block
with an undefined initial condition.

“Detect multiple driving blocks executing
at the same time step” on page 2-79

Select the diagnostic action to take when
the software detects a Merge block with
more than one driving block executing at
the same time step.

Model Configuration Parameters: Advanced Parameters

Parameter

Description

“Underspecified initialization detection” on
page 2-81

Select how Simulink software handles
initialization of initial conditions for
conditionally executed subsystems, Merge
blocks, subsystem elapsed time, and
Discrete-Time Integrator blocks.

“Solver data inconsistency” on page
2-84

Select the diagnostic action to take if
Simulink software detects S-functions that
have continuous sample times, but do not
produce consistent results when executed
multiple times.

“Block diagram contains disabled library
links” on page 2-86

Select the diagnostic action to take when
saving a model containing disabled library
links.

“Block diagram contains parameterized
library links” on page 2-88

Select the diagnostic action to take when
saving a model containing parameterized
library links.

“InitInArrayFormatMsg” on page 2-90

Message behavior when the initial state is
an array

Model Configuration Parameters for Data Import/Export Advanced

Parameters

Parameter

Description

“Enable live streaming of selected signals
to Simulation Data Inspector” on page
2-65

Specify whether to send signals marked

for streaming | to the Simulation Data
Inspector during simulation.

“DatasetSignalFormat” on page 2-63

Format for logged Dataset leaf elements.

Model Configuration Parameters for Optimization Advanced Parameters

Parameter

Description

“Remove code from floating-point to integer
conversions with saturation that maps
NaN to zero” on page 2-92

Remove code that handles floating-point to
integer conversion results for NaN values.

2-5

2 Simulink Configuration Parameters: Advanced

2-6

Parameter

Description

“Compiler optimization level” on page
2-94

Sets the degree of optimization used by
the compiler when generating code for
acceleration.

“Verbose accelerator builds” on page
2-96

Select the amount of information displayed
during code generation for Simulink
Accelerator mode, referenced model
Accelerator mode, and Rapid Accelerator
mode.

“Implement logic signals as Boolean data
(vs. double)” on page 2-98

Controls the output data type of blocks that
generate logic signals.

“Block reduction” on page 2-100

Reduce execution time by collapsing or
removing groups of blocks.

“Conditional input branch execution” on
page 2-103

Improve model execution when the model
contains Switch and Multiport Switch
blocks.

“Use memset to initialize floats and
doubles to 0.0” on page 2-105

Specify whether to generate code that
explicitly initializes floating-point data to
0.0.

“Signal storage reuse” on page 2-107

Reuse signal memory.

“Enable local block outputs” on page
2-109

Specify whether block signals are declared
locally or globally.

“Reuse local block outputs” on page
2-111

Specify whether Simulink Coder software
reuses signal memory.

“Eliminate superfluous local variables
(Expression folding)” on page 2-113

Collapse block computations into single
expressions.

“Reuse global block outputs” on page
2-115

Reuse global memory for block outputs.

“Optimize global data access” on page
2-117

Select global variable optimization.

“Simplify array indexing” on page 2-119

Replace multiply operations in array
indices when accessing arrays in a loop.

“Perform inplace updates for Bus
Assignment blocks” on page 2-140

Reuse the input and output variables of
Bus Assignment blocks if possible.

Model Configuration Parameters: Advanced Parameters

Parameter

Description

“Reuse buffers for Data Store Read and
Data Store Write blocks” on page 2-142

Remove temporary buffers for Data Store
Read and Data Store Write blocks. Use
the Data Store Memory block directly if
possible.

“Optimize block operation order in the
generated code” on page 2-144

Reorder block operations in the generated
code for improved code execution speed.

Model Configuration Parameters for Simulation Target Advanced

Parameters

Parameter

Description

“Echo expressions without semicolons” on
page 2-129

Enable run-time output in the MATLAB
Command Window, such as actions that do
not terminate with a semicolon.

“Simulation target build mode” on page
2-134

Specifies how you build the simulation
target for a model that contains MATLAB

Function blocks, Stateflow® charts, or
Truth Table blocks.

“Ensure responsiveness” on page 2-121

Enables responsiveness checks in code
generated for MATLAB Function blocks.

“Generate typedefs for imported bus and
enumeration types” on page 2-133

Determines typedef handling and
generation for imported bus and

enumeration data types in Stateflow and
MATLAB Function blocks.

“Ensure memory integrity” on page
2-131

Detects violations of memory integrity
in code generated for MATLAB Function
blocks and stops execution with a
diagnostic.

“Enable run-time recursion for MATLAB
functions” on page 2-124

Allow recursive functions in code that is
generated for MATLAB code that contains
recursive functions.

“Compile-time recursion limit for MATLAB
functions” on page 2-123

For compile-time recursion, control the
number of copies of a function that are
allowed in the generated code.

2-7

2 Simulink Configuration Parameters: Advanced

2-8

Parameter

Description

“Dynamic memory allocation in MATLAB
Function blocks” on page 2-125

Use dynamic memory allocation (malloc)
for variable-size arrays whose size (in
bytes) is greater than or equal to the
dynamic memory allocation threshold.
This parameter applies to MATLAB code
in a MATLAB Function block, a Stateflow
chart, or a System object associated with a
MATLAB System block.

“Dynamic memory allocation threshold in
MATLAB Function blocks” on page 2-127

Use dynamic memory allocation (malloc)
for variable-size arrays whose size (in
bytes) is greater than or equal to a
threshold. This parameter applies to
MATLAB code in a MATLAB Function
block, a Stateflow chart, or a System object
associated with a MATLAB System block.

“Use local custom code settings (do not
inherit from main model)” on page 2-136

Specify if a library model can use custom
code settings that are unique from the
main model. (This parameter is read-only)

“Remove disable function” (Embedded

Coder)

Do not generate disable method for this
model.

“Remove reset function” (Embedded Coder)

Do not generate reset method for this
model.

Allow setting breakpoints during
simulation

Enable debugging and animation during
simulation of a model that contains
MATLAB Function blocks, Stateflow
charts, State Transition blocks, or Truth
Table blocks.

Test hardware is the same as production hardware

Test hardware is the same as production hardware

Description
Specify whether the test hardware differs from the production hardware.

Category: Hardware Implementation

Settings
Default: On

|7On

Specifies that the hardware used to test the code generated from the model is the
same as the production hardware, or has the same characteristics.

I off

Specifies that the hardware used to test the code generated from the model has
different characteristics than the production hardware.

Tip

You can generate code that runs on the test hardware but behaves as if it had been
generated for and executed on the deployment hardware.

Dependency

Enables test hardware parameters.

Recommended settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

2-9

2 Simulink Configuration Parameters: Advanced

2-10

Application Setting

Safety precaution On

Related Examples

Specifying Test Hardware Characteristics (Simulink Coder)
Hardware Implementation Options (Simulink Coder)
“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

Test device vendor and type

Test device vendor and type

Description

Select the manufacturer and type of the hardware to use to test the code generated from
the model.

Category: Hardware Implementation

Settings

Default: Intel, x86—64 (Windows64)

AMD

ARM Compatible
Altera

Analog Devices
Atmel
Freescale
Infineon

Intel
Microchip

NXP

Renesas

STMicroelectronics
Texas Instruments

ASIC/FPGA

Custom Processor

AMD options:

Athlon 64
K5/K6/Athlon

2-11

2 Simulink Configuration Parameters: Advanced

+ x86-32 (Windows 32)
+ Xx86—-64 (Linux 64)

+ Xx86-64 (Mac 0S X)

+ x86-64 (Windows64)

ARM options:

* ARM 10

- ARM 11

« ARM 7

+ ARM 8

* ARM 9

* ARM Cortex

Altera options:

* SoC (ARM CortexA)

Analog Devices options:

+ ADSP-CM40x (ARM Cortex-M)
* Blackfin

* SHARC

+ TigerSHARC

Atmel options:

- AWR
- AVR (32-bit)
- AVR (8-bit)

Freescale options:

+ 32-bit PowerPC
+ 68332
+ B8HCO8

2-12

Test device vendor and type

* 68HC11

+ ColdFire
+ DSP563xx (16-bit mode)
+ HC(S)12
* MPC52xx
* MPC5500
+ MPC55xx
* MPC5xx

* MPC7xxx
* MPC82xx
* MPC83xx
* MPC85xx
* MPC86xx
* MPC8xx

+ S08

+ S12x

+ StarCore

Infineon options:
+ Cl6x, XC1l6x
*+ TriCore
Intel options:

+ x86-32 (Windows32)
+ Xx86-64 (Linux 64)
+ Xx86-64 (Mac 0S X)
+ x86-64 (Windows64)

Microchip options:

+ PIC18

2-13

2 Simulink Configuration Parameters: Advanced

2-14

dsPIC

NXP options:

Cortex—MO/MO+
Cortex—M3
Cortex—M4

Renesas options:

M16C
M32C
R8C/Tiny
RH850
RL78
SH-2/3/4
V850

STMicroelectronics:

Texas Instruments options:

ST10/Superl0

C2000
C5000
C6000
MSP430

Stellaris Cortex—M3

TMS470
TMS570 Cortex—R4

ASIC/FPGA options:

ASIC/FPGA

Test device vendor and type

Tips
+ Before you select the device type, select the device vendor.

+ Selecting a device type specifies the hardware device to define system constraints:

* Default hardware properties appear as the initial values.
* You cannot change parameters with only one possible value.

Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointd size | ptrdiff |int |float

long

AMD
Athlon |8 |16 |32 |64 |64 |64 |64 |64 |64 ChaiNone| Little | Zero v m
64 Endiai
K5/K6/ |8 |16 |32 (32|64 (32 |32 (32 (32 ChaiNone| Little | Zero v m
Athlon Endiai
x86-32 |8 16 |32 |32 |64 |32 |32 32 |32 ChaiFloat| Little | Zero v o
(Windows Endiai
x86-64 |8 |16 |32 |64 |64 |64 |64 |64 |64 ChaiFloat|Little | Zero v m
(Linux Endiai
64)
x86—64 |8 16 |32 |64 |64 |64 |64 |64 |64 ChaiFloat| Little |Zero v o
(Mac OS Endiai
X)

2-15

2 Simulink Configuration Parameters: Advanced

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
x86—64 |8 16 |32 |32 |64 |64 |64 |64 |64 Chat Float| Little | Zero v o
(Windows Endiai
ARM Compatible
ARM 8 16 |32 |32 (64 |32 (32 |32 (32 Long Float| Little | Zero v |
7/8/9/10 Endiay
ARM 11 |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub| Little | Zero v |
Endiay
ARM 8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v |
Cortex Endiay
Altera
SoC 8 |16 |32 |32 |64 (32 |32 |32 |32 ChajNone| Little |Zero v m
(ARM Endiai
Cortex
A)
Analog Devices
ADSP- 8 16 |32 |32 |64 |32 (32 |32 (32 Long Doub| Little |Zero v i
CM40x (AR Endiai
Cortex-
M)
Blackfin|8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub| Little | Zero v |
Endiay
SHARC 32 |32 |32 |32 |64 |32 (32 |32 (32 LongDoub|Big |Zero v i
Endiai

2-16

Test device vendor and type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
TigerSHA[32 |32 (32|32 |64 |32 |32 |32 |32 Long Doub| Little |Zero v o
Endiai
Atmel
AVR 8 |16 |16 (32|64 (8 |16 (16 |16 ChaiNone|Little | Zero v m
Endiai
AVR 8 16 |32 |32 |64 |32 (32 |32 (32 ChatNone| Little | Zero v |
(32- Endiay
bit)
AVR (8- |8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little |Zero v o
bit) Endiai
Freescale
32-bit |8 16 |32 |32 |64 |32 (32 |32 (32 LongDoub|Big |Zero v o
PowerPC Endiay
68332 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone|Big |Zero v o
Endiay
68HCO8 |8 16 |16 |32 |64 |8 |8 16 |8 ChaiNone|Big |Zero v o
Endiay
68HC11 |8 16 |16 |32 |64 |8 |8 16 |16 ChaiNone|Big |Zero v |
Endiay
ColdFirel8 |16 (32 (32|64 |32 |32 |32 |32 ChaiNone|Big |Zero v m
Endiai
DSP563xx| 8 16 |16 |32 |64 |16 |16 |16 |16 ChatNone| Little | Zero v o
(16-bit Endiay
mode)

2-17

2 Simulink Configuration Parameters: Advanced

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
DSP5685x| 8 16 |16 |32 |64 |16 |16 |16 |16 Chat Float| Little | Zero v o
Endiai
HC(S)12 |8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone|Big |Zero v o
Endiay
MPC52xx,|8 16 |32 |32 |64 |32 |32 |32 |32 LongNone|Big |Zero v |
MPC5500, Endias
MPC55xx,
MPC5xx,
PC5xx,
MPC7xXX,
MPC82xx,
MPC83xx,
MPC86xX,
MPC8xx
MPC85xx |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub|Big |Zero v |
Endiai
S08 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone|Big |Zero v |
Endiai
S12x 8 16 |16 |32 |64 |16 |16 |16 |16 ChalNone|Big |Zero v |
Endiai
StarCore(8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little | Zero v |
Endiay
Infineon
Cléx, 8 16 |16 |32 |64 |16 |16 |16 |16 ChatNone| Little | Zero v o
XC16x Endiay

2-18

Test device vendor and type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
TriCore |8 |16 |32 (32 |64 |32 |32 |32 |32 ChatNone| Little | Zero v m
Endiai
Intel
x86-32 |8 16 |32 |32 |64 |32 (32 |32 (32 ChaiFloat| Little | Zero v i
(Windows Endiai
x86—64 |8 16 |32 |64 |64 |64 |64 |64 |64 ChaiFloat| Little |Zero v i
(Linux Endiai
64)
x86—64 [8 |16 |32 |64 |64 |64 |64 |64 |64 Chat Float| Little | Zero v o
(Mac 0S Endiay
X)
x86—64 (8 |16 |32 (32|64 |64 |64 |64 |64 ChaiFloat|Little | Zero v m
(Windows Endiai
Microchip
PIC18 8 |16 |16 |32 |64 |8 |8 24 |24 ChaiNone| Little | Zero v o
Endiay
dsPIC 8 |16 |16 (32|64 (16 |16 (16 |16 ChaiNone| Little | Zero v m
Endiai
NXP
Cortex— (8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub]| Little | Zero v |
MO/MO+ Endiai
Cortex— (8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub]| Little | Zero v |
M3 Endiai

2-19

2 Simulink Configuration Parameters: Advanced

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte [Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
Cortex— |8 16 |32 (32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v i
M4 Endiai
Renesas
M16C 8 |16 |16 (32|64 |16 |16 |16 |16 ChaiNone|Little | Zero v m
Endiai
M32C 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little |Zero v i
Endiai
R8C/ 8 16 |16 |32 |64 |16 |16 |16 |16 ChaiNone| Little | Zero v o
Tiny Endiay
RH850 8 16 (32 |32 |64 |32 |32 |32 |32 ChaiNone| Little | Zero v o
Endiay
RL78 8 |16 |16 (32|64 (16 |16 (16 |16 ChaiNone| Little | Zero v m
Endiai
SH-2/3/4(8 16 |32 |32 (64 |32 (32 |32 (32 ChaiNone|Big |Zero v |
Endiai
V850 8 16 |32 |32 |64 |32 (32 |32 (32 ChaiNone| Little |Zero v i
Endiai
STMicroelectronics
ST10/ 8 |16 |16 (32|64 |16 |16 |16 |16 ChaiNone|Little | Zero v m
Superl0 Endiay
Texas Instruments
C2000 16 |16 |16 |32 |64 |16 |32 |16 |16 Int |None|Little |Zero v m
Endiai

2-20

Test device vendor and type

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device Number of bits Largest |Byte |Round to |Shift |Long
vendor / atomic |orderin right |long
Device size
fype char|shor{int [lon¢long |nativ pointe size |ptrdiff |int |float
long
C5000 16 |16 |16 |32 |64 |16 |16 |16 |16 Int |None|Big |Zero v i
Endiai
C6000 8 16 |32 |40 (64 |32 (32 |32 (32 Int |None|Little |Zero v |
Endiay
MSP430 |8 |16 |16 |32 |64 |16 |16 |16 |16 ChajNone| Little |Zero v m
Endiay
Stellari|8 16 |32 |32 |6 32 (32 |32 (32 Long Doub| Little | Zero v |
Cortex— Endiay
M3
TMS470 |8 16 (32 |32 |64 |32 |32 |32 |32 Long Doub| Little | Zero v o
Endiay
TMS570 |8 16 |32 |32 (64 |32 (32 |32 (32 LongDoub]| Little | Zero v |
Cortex— Endiai
R4
ASIC/FPGA
ASIC/ NA |[NA [NA[NAINA [NA |[NA |NA |[NA |NA [NA |[NA |NA NA |[NA
FPGA

If your hardware does not match one of the listed types, select Custom.

The Device vendor and Device type fields share the command-line parameter

TargetHWDeviceType. When specifying this parameter at the command line,

separate the device vendor and device type values by using the characters —>. For
example: " Intel->x86-64 (Linux 64)".

If you have a Simulink Coder license and you want to add Device vendor and

Device type values to the default set, see “Register More Device Vendor and Device
Type Values” (Simulink Coder).

2-21

2 Simulink Configuration Parameters: Advanced

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Menu options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

* Number of bits: char

* Number of bits: short

* Number of bits: int

* Number of bits: long

* Number of bits: long long

* Number of bits: float

* Number of bits: double

* Number of bits: native

* Number of bits: pointer

* Number of bits: size_t

* Number of bits: ptrdiff_t

+ Largest atomic size: integer

+ Largest atomic size: floating-point

* Byte ordering

+ Signed integer division rounds to

+ Shift right on a signed integer as arithmetic shift
* Support long long

Whether you can modify the value of a device-specific parameter varies according to
device type.

Command-Line Information
Parameter: TargetHWDeviceType
Type: character vector

Value: any valid value (see tips)

2-22

Test device vendor and type

Default:" Intel->x86-64 (Windows64) "

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples

. “Hardware board” on page 1-13

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-23

2 Simulink Configuration Parameters: Advanced

Number of bits: char

Description
Describe the character bit length for the hardware that you use to test code.

Category: Hardware Implementation

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter an integer value between 8 and 32.
Tip

All values must be a multiple of 8.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerChar
Type: integer

Value: any valid value

Default: 8

Recommended Settings

Application Setting
Debugging No impact

2-24

Number of bits: char

Application Setting

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-25

2 Simulink Configuration Parameters: Advanced

Number of bits: short

Description
Describe the data bit length for the hardware that you use to test code.

Category: Hardware Implementation

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter an integer value between 8 and 32.
Tip

All values must be a multiple of 8.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerShort
Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting
Debugging No impact

2-26

Number of bits: short

Application Setting

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 1-8
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-27

2 Simulink Configuration Parameters: Advanced

Number of bits: int

Description
Describe the data integer bit length of the hardware that you use to test code.

Category: Hardware Implementation

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter an integer value between 8 and 32.
Tip

All values must be a multiple of 8.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerint
Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting
Debugging No impact

2-28

Number of bits: int

Application Setting

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 1-8
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-29

2 Simulink Configuration Parameters: Advanced

Number of bits: long

2-30

Description
Describe the data bit lengths for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: 32
Minimum: 32
Maximum: 64

Enter an integer value between 32 and 64. (The value 64 is selected by default if you
run MATLAB software on a 64-bit host computer and select the MATLAB host as the
test hardware — that is, TargetHWDeviceType equals "Generic->MATLAB Host
Computer-.)

Tip
All values must be a multiple of 8 and between 32 and 64.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLong
Type: integer

Value: any valid value

Default: 32

Number of bits: long

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact

No impact
Target specific

No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-31

2 Simulink Configuration Parameters: Advanced

Number of bits: long long

2-32

Description

Describe the length in bits of the C long long data type that the test hardware
supports.

Category: Hardware Implementation

Settings
Default: 64
Minimum: 64
Maximum: 128

The number of bits that represent the C long long data type.

Tips
+ Use the long long data type only if your C compiler supports long long.

* You can change the value for custom targets only. For custom targets, all values must
be a multiple of 8 and between 64 and 128.

Dependencies

+ Enable long long enables use of this parameter.

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* The value of this parameter must be greater than or equal to the value of Number of
bits: long.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLonglLong
Type: integer

Number of bits: long long

Value: any valid value
Default: 64

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact

No impact
Target specific

No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

Specifying Test Hardware Characteristics (Simulink Coder)
Hardware Implementation Options (Simulink Coder)
“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-33

2 Simulink Configuration Parameters: Advanced

Number of bits: float

Description

Describe the bit length of floating-point data for the hardware that you use to test code
(read only).

Category: Hardware Implementation

Settings

Default: 32

Always equals 32.
Command-Line Information
Parameter: TargetBitPerFloat
Type: integer

Value: 32 (read-only)
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 1-8

2-34

Number of bits: float

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-35

2 Simulink Configuration Parameters: Advanced

Number of bits: double

Description

Describe the bit-length of double data for the hardware that you use to test code (read
only).

Category: Hardware Implementation

Settings

Default: 64

Always equals 64.
Command-Line Information
Parameter: TargetBitPerDouble
Type: integer

Value: 64 (read only)
Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 1-8

2-36

Number of bits: double

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-37

2 Simulink Configuration Parameters: Advanced

Number of bits: native

2-38

Description
Describe the microprocessor native word size for the hardware that you use to test code.

Category: Hardware Implementation

Settings

Default: 32

Minimum: 8

Maximum: 64

Enter a value between 8 and 64. (The value 64 is selected by default if you run MATLAB
software on a 64-bit host computer and select the MATLAB host as the test hardware —
that is, TargetHWDeviceType equals "Generic->MATLAB Host Computer”.)

Tip

All values must be a multiple of 8.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetWordSize
Type: integer

Value: any valid value

Default: 32

Number of bits: native

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact

No impact
Target specific

No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-39

2 Simulink Configuration Parameters: Advanced

Number of bits: pointer

2-40

Description
Describe the bit-length of pointer data for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: Device-specific value (see Dependencies)
Minimum: 8

Maximum: 64

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerPointer
Type: integer

Value: any valid value

Default: device dependent

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Number of bits: pointer

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-41

2 Simulink Configuration Parameters: Advanced

Number of bits: size t

2-42

Description

Describe the bit-length of size_ t data for the hardware that you use to test code.

If ProdEgTarget is off, an Embedded Coder processor-in-the-loop (PIL) simulation
checks this setting with reference to the target hardware. If ProdEgTarget is on, the
PIL simulation checks the ProdBitPerSizeT setting.

Category: Hardware Implementation

Settings
Default: Device-specific value (see Dependencies)

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerSizeT
Type: integer

Value: any valid value

Default: device dependent

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Number of bits: size t

Application Setting

Safety precaution No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 1-8
. “Model Configuration Parameters: Advanced Parameters” on page 2-2
. “Verification of Code Generation Assumptions” (Embedded Coder)

2-43

2 Simulink Configuration Parameters: Advanced

Number of bits: ptrdiff_t

2-44

Description

Describe the bit-length of ptrdi fF_t data for the hardware that you use to test code.
If ProdEgTarget is off, an Embedded Coder processor-in-the-loop (PIL) simulation
checks this setting with reference to the target hardware. If ProdEgTarget is on, the
PIL simulation checks the ProdBitPerPtrDi ffT setting.

Category: Hardware Implementation

Settings
Default: Device-specific value (see Dependencies)

Value must be 8, 16, 24, 32, 40, 64, or 128 and greater or equal to the value of int.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerPtrDi FfT
Type: integer

Value: any valid value

Default: device dependent

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Number of bits: ptrdiff_t

Application Setting

Safety precaution No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)

. “Hardware Implementation Pane” on page 1-8
. “Model Configuration Parameters: Advanced Parameters” on page 2-2
. “Verification of Code Generation Assumptions” (Embedded Coder)

2-45

2 Simulink Configuration Parameters: Advanced

Largest atomic size: integer

2-46

Description

Specify the largest integer data type that can be atomically loaded and stored on the
hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Short

Specifies that short is the largest integer data type that can be atomically loaded
and stored on the hardware that you use to test code.

Int

Specifies that int is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Long

Specifies that long is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

LongLong

Specifies that long long is the largest integer data type that can be atomically
loaded and stored on the hardware that you use to test code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Largest atomic size: infeger

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

* You can set this parameter to LongLong only if the hardware used to test the code
supports the C long long data type and you have selected Enable long long.

Command-Line Information

Parameter: TargetLargestAtomiclnteger

Value: "Char™ | "Short® | "Int" | "Long" | "LongLong"
Default: "Char*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples

. Specifying Test Hardware Characteristics (Simulink Coder)
. Hardware Implementation Options (Simulink Coder)

. “Support long long” on page 2-57

. “Hardware Implementation Pane” on page 1-8

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-47

2 Simulink Configuration Parameters: Advanced

Largest atomic size: floating-point

2-48

Description

Specify the largest floating-point data type that can be atomically loaded and stored on
the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: None

Float

Specifies that Float is the largest floating-point data type that can be atomically
loaded and stored on the hardware that you use to test code.

Double

Specifies that double is the largest floating-point data type that can be atomically
loaded and stored on the hardware that you use to test code.

None

Specifies that there is no applicable setting or not to use this parameter in generating
multirate code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetLargestAtomicFloat

Largest atomic size: floating-point

Value: "Float™ | "Double® | "None*

Default: "None*

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact

No impact
Target specific

No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-49

2 Simulink Configuration Parameters: Advanced

Byte ordering

2-50

Description
Describe the byte ordering for the hardware that you use to test code.

Category: Hardware Implementation

Settings
Default: Unspecified

Unspecified
Specifies that the code determines the endianness of the hardware. This choice is the
least efficient.

Big Endian
The most significant byte comes first.

Little Endian

The least significant byte comes first.

Note: For guidelines about configuring Production hardware controls for code
generation, see Hardware Implementation Options (Simulink Coder).

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: TargetEndianess

Value: "Unspecified” | "LittleEndian® | "BigEndian*®
Default: "Unspecified”

Byte ordering

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact
No impact
No impact

No impact when Test hardware is the same
as production hardware is selected. If it is not
selected, no recommendation.

. Specifying Test Hardware Characteristics (Simulink Coder)

. Hardware Implementation Options (Simulink Coder)

“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-51

2 Simulink Configuration Parameters: Advanced

Signed integer division rounds to

Description

Describe how your compiler for the test hardware rounds the result of dividing two
signed integers.

Category: Hardware Implementation

Settings
Default: Undefined

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if
that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer
to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer
to negative infinity.

Tips

* Use the Integer rounding mode parameter on your model's blocks to simulate the
rounding behavior of the C compiler that you use to compile code generated from the
model. This setting appears on the Signal Attributes pane of the parameter dialog
boxes of blocks that can perform signed integer arithmetic, such as the Product block.

* For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode
the value of Signed integer division rounds to also affects rounding. For details,
see “Rounding” (Fixed-Point Designer).

’

+ For information on how this option affects code generation, see Hardware
Implementation Options (Simulink Coder).

2-52

Signed integer division rounds to

* This table illustrates the compiler behavior described by the options for this

parameter.

N Ideal N/D |Zero Floor Undefined

33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9

33 -4 -8.25 -8 -9 -8 or -9

-33 -4 8.25 8 8 8or9
Dependency

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetIntDivRoundTo
Value: "Floor™ | "Zero® | "Undefined”
Default: "Undefined”

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.

Zero for production code generation.

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples
. Specifying Test Hardware Characteristics (Simulink Coder)

2-53

2 Simulink Configuration Parameters: Advanced

. Hardware Implementation Options (Simulink Coder)
. “Hardware Implementation Pane” on page 1-8
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-54

Shift right on a signed integer as arithmetic shift

Shift right on a signed integer as arithmetic shift

Description

Describe how your compiler for the test hardware fills the sign bit in a right shift of a
signed integer.

Category: Hardware Implementation

Settings
Default: On

¥ On
Generates simple, efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

I off

Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips
* Select this parameter if your C compiler implements a signed integer right shift as an

arithmetic right shift.

* An arithmetic right shift fills bits vacated by the right shift with the value of the most
significant bit, which indicates the sign of the number in twos complement notation. It
is equivalent to dividing the number by 2.

+ This setting affects only code generation.
Dependency

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetShiftRightIntArith

2-55

2 Simulink Configuration Parameters: Advanced

2-56

Value: "on® | "off"
Default: "on*

Recommended settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples

Specifying Test Hardware Characteristics (Simulink Coder)
Hardware Implementation Options (Simulink Coder)
“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

Support long long

Support long long

Description

Specify that your C compiler supports the C long long data type. Most C99 compilers
support long long.

Category: Hardware Implementation

Settings
Default: Off
Y1 On
Enables use of C long long data type on the test hardware.
Off
Disables use of C long long data type on the test hardware.
Tips

* This parameter is enabled only if the selected test hardware supports the C long
long data type.

+ If your compiler does not support C long long, do not select this parameter.
Dependencies

This parameter enables Number of bits: long long.

Command-Line Information
Parameter: TargetLonglLongMode
Value: "on® | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact

2-57

2 Simulink Configuration Parameters: Advanced

2-58

Application Setting

Traceability No impact

Efficiency Target specific

Safety precaution No impact when Test hardware is the same

as production hardware is selected. If it is not
selected, no recommendation.

Related Examples

Specifying Test Hardware Characteristics (Simulink Coder)
Hardware Implementation Options (Simulink Coder)
“Number of bits: long long” on page 2-32

“Hardware Implementation Pane” on page 1-8

“Model Configuration Parameters: Advanced Parameters” on page 2-2

Allowed unit systems

Allowed unit systems

Description
Specify unit systems allowed in the model.

Category: Diagnostics

Settings
Default: all

all or comma-separated list of one or more of:

Si
International System of Units.
S1 (extended)
International System of Units (extended).
English
English units.
CGS

Centimetre—gram—second system of units.
Tip

As an alternative to the text box, click the Set Allowed Unit Systems button.

2-59

2 Simulink Configuration Parameters: Advanced

2-60

7] Set Allowed Unit Systems =
Unit System Configuration

Restrict units to specified allowed unit systems.

Parameters

Disallowed unit systems Allowed unit systems

51

English

SI (extended)
CGS

[C] Allow all unit systems

[OK H Cancel H Help l

* To allow all unit systems, select the Allow all unit systems check box.

* Use the Allow and Disallow buttons to allow or disallow selected unit systems.

Command-Line Information

Parameter: Al lowedUnitSystems

Type: character vector

Value: S1 | SI (extended) | English | CGS in a comma-delimited list or all,

without quotation marks
Default: all

Related Examples

. “Unit Specification in Simulink Models”
. Solver Diagnostics on page 12-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

Units inconsistency messages

Units inconsistency messages

Description

Specify if unit inconsistencies should be reported as warnings. Select the diagnostic
action to take when the Simulink software detects unit inconsistencies.

Category: Diagnostics

Settings
Default: warning

warning
Display unit inconsistencies as warnings.
none

Display nothing for unit inconsistencies (do not report unit inconsistencies),

Command-Line Information
Parameter: UnitslnconsistencyMsg
Value: "warning® | "none*

Default: "warning”

Related Examples
. “Unit Specification in Simulink Models”
. Solver Diagnostics on page 12-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-61

2 Simulink Configuration Parameters: Advanced

Allow automatic unit conversions

2-62

Description

Allow automatic unit conversions in the model.

Category: Diagnostics

Settings

Default: On

Y1 On

Enables automatic unit conversions in cases where units have a known mathematical
relationship. For more information, see “Converting Units”.

Off

Disables automatic unit conversions in cases where units where units have a known
mathematical relationship. To convert, you must insert a Unit Conversion block
between the differing ports.

Command-Line Information

Parameter: Al lowAutomaticUnitConversions
Value: "on® | "off"

Default: "on*

Related Examples

“Unit Specification in Simulink Models”
“Converting Units”
Solver Diagnostics on page 12-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

DatasetSignalFormat

DatasetSignalFormat

Description
Format for logged Dataset leaf elements.

Category: Data Import/Export

Settings
Default: timeseries

timeseries

Save Dataset format logging data in MATLAB timeseries format.
timetable

Save Dataset format logging data in MATLAB timetable format.

Tips
* Access the DatasetSignalFormat parameter from the All Parameters
configuration parameters pane.

* The timetable format can make it easier to merge logged data from multiple
simulations.

* You cannot load timetable format data into a model.
+ The timetable has a single data column.

* The Simulink signal dimensions of [n] and [nx1] are treated equivalently in the
timetable representation

* The timetable properties do not save sample time information, interpolation settings
for the data, or signal units.

+ The DatasetSignalFormat parameter is ignored for Scope blocks

Command-Line Information
Parameter: DatasetSignalFormat
Value: "timeseries”™ | "timetable”
Default: "timeseries”

2-63

2 Simulink Configuration Parameters: Advanced

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

. “Model Configuration Parameters: Data Import/Export” on page 3-2
. “Log Data to Persistent Storage”

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-64

Enable live streaming of selected signals to Simulation Data Inspector

Enable live streaming of selected signals to Simulation Data
Inspector

Description

Specify whether to send signals marked for streaming ' to the Simulation Data
Inspector during simulation.

Category: Data Import/Export

Settings
Default: On

|7On

Send signals marked for streaming to the Simulation Data Inspector during
simulation. This setting turns on the streaming state on the Simulation Data
Inspector button on the Simulink Editor toolbar. During simulation, the simulation
data appears in the Runs pane in the Simulation Data Inspector. To view a
streaming signal during simulation, open the Simulation Data Inspector, and select
the signal check box in the Runs pane.

I off

Do not send signals marked for streaming to the Simulation Data Inspector during
simulation. This setting turns off the live streaming state on the Simulation Data
Inspector button on the Simulink Editor toolbar.

Tip

To open the Simulation Data Inspector, on the Simulink Editor toolbar, click the
Simulation Data Inspector button arrow and select Simulation Data Inspector.

Command-Line Information
Parameter: Visual izeSimOutput
Value: "on® | "off"

Default: "on*

2-65

2 Simulink Configuration Parameters: Advanced

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

. “Log Signals to the Simulation Data Inspector”

. “Inspect Simulation Data”

. “Customize the Simulation Data Inspector Interface”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-66

Array bounds exceeded

Array bounds exceeded

Description
Enable live streaming of selected signals to Simulation Data Inspector

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

+ Use this option to check whether execution of each instance of a block during model
simulation writes data to memory locations not allocated to the block. This can
happen only if your model includes a user-written S-function that has a bug.

* Enabling this option slows down model execution considerably. Thus, you should
enable it only if you suspect that your model contains a user-written S-function that
has a bug.

* This option causes Simulink software to check whether a block writes outside the
memory allocated to it during simulation. Typically this can happen only if your
model includes a user-written S-function that has a bug.

* See Checking Array Bounds in “Error Handling” for more information on using this
option.

* For models referenced in Accelerator mode, Simulink ignores the Array bounds
exceeded parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

2-67

2 Simulink Configuration Parameters: Advanced

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: ArrayBoundsChecking
Value: "none” | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency none
Safety precaution No impact

Related Examples
. Diagnosing Simulation Errors
. Data Validity Diagnostics on page 9-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-68

Model Verification block enabling

Model Verification block enabling

Description
Enable model verification blocks in the current model either globally or locally.

Category: Diagnostics

Settings
Default: Use local settings

Use local settings

Enables or disables blocks based on the value of the Enable assertion parameter
of each block. If a block's Enable assertion parameter is on, the block is enabled;
otherwise, the block is disabled.

Enable All

Enables all model verification blocks in the model regardless of the settings of their
Enable assertion parameters.

Disable All

Disables all model verification blocks in the model regardless of the settings of their
Enable assertion parameters.

Dependency

Simulation and code generation ignore the Model Verification block enabling
parameter when model verification blocks are inside a S-function.

Command-Line Information

Parameter: AssertControl

Value: "UseLocalSettings” | "EnableAll" | "DisableAll*
Default: "UseLocalSettings”

Recommended Settings

Application Setting
Debugging No impact

2-69

2 Simulink Configuration Parameters: Advanced

Application Setting
Traceability No impact
Efficiency No impact

Safety precaution EnableAll for simulation or during development

DisableAll for production code generation

Related Examples
. Diagnosing Simulation Errors
. Data Validity Diagnostics on page 9-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-70

Check runtime output of execution context

Check runtime output of execution context

Description

Specify whether to display a warning if Simulink software detects potential output
differences from previous releases.

Category: Diagnostics

Settings
Default: Off

¥ On
Displays a warning if Simulink software detects potential output differences from
previous releases.

I off

Does not display a warning.

Tips
+ This diagnostic is triggered if the model contains a block that meets the following
conditions:
The block has a tunable parameter.
The block is connected to an output of a conditionally executed subsystem.
* The block inherits its execution context from that subsystem.

+ The Outport to which it is connected has an undefined initial condition, i.e., the
Outport block's Initial output parameter is set to [].

* Models with blocks that meet these criteria can produce results when the parameter
1s tuned in the current release that differ from results produced in Release 13 or
earlier releases.

Consider for example the following model.

2-71

2 Simulink Configuration Parameters: Advanced

ik

Puks e Gens stor

T
]

r

i1

Out] p——p

Enabled Subsystem Gain

@—b tunevar

S-Function

In this model, the tunevar S-function changes the value of the Gain block's k
parameter and updates the diagram at simulation time 7 (i.e., it simulates tuning the
parameter).

The following figure compares the superimposed output of the model's Pulse
Generator block and its Gain block in Release 13 and the current release.

2-72

Check runtime output of execution context

Release 13 Current Release

Note that the output of the Gain block changes at time 7 in Release 13 but does not
change in the current release. This is because in Release 13, the Gain block belongs
to the execution context of the root system and hence executes at every time step
whereas in the current release, the Gain block belongs to the execution context of the

triggered subsystem and hence executes only when the triggered subsystem executes,
1.e., at times 5, 10, 15, and 20.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information

Parameter: CheckExecutionContextRuntimeOutputMsg
Value: "on" | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

2-73

2 Simulink Configuration Parameters: Advanced

Application Setting
Efficiency No impact
Safety precaution On

Related Examples

. Diagnosing Simulation Errors

. “Underspecified initialization detection” on page 2-81
. Data Validity Diagnostics on page 9-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-74

Check undefined subsystem initial output

Check undefined subsystem initial output

Description

Specify whether to display a warning if the model contains a conditionally executed
subsystem in which a block with a specified initial condition drives an Outport block with
an undefined initial condition

Category: Diagnostics

Settings
Default: On

|7On

Displays a warning if the model contains a conditionally executed subsystem in
which a block with a specified initial condition drives an Outport block with an
undefined initial condition.

I off

Does not display a warning.

Tips

+ This situation occurs when a block with a specified initial condition, such as a
Constant, Initial Condition, or Delay block, drives an Outport block with an undefined
initial condition (Initial output parameter is set to []).

* Models with such subsystems can produce initial results (i.e., before initial activation
of the conditionally executed subsystem) in the current release that differ from initial
results produced in Release 13 or earlier releases.

Consider for example the following model.

2-75

2 Simulink Configuration Parameters: Advanced

|E| ex_check_undefined_subsys_initial_output P

|| *l_.D
Step

Scope

r

F

Ourti

Triggered SubsystEm

[*&| ex_check_undefined_subsys_initial_output b |[Pa| Triggered Subsystem

Trigger
s —D
Out1
Constant

This model does not define the initial condition of the triggered subsystem's output
port.

The following figure compares the superimposed output of this model's Step block and
the triggered subsystem in Release 13 and the current release.

2-76

Check undefined subsystem initial output

Release 13 Current Release

Notice that the initial output of the triggered subsystem differs between the two
releases. This is because Release 13 and earlier releases use the initial output of

the block connected to the output port (i.e., the Constant block) as the triggered
subsystem's initial output. By contrast, this release outputs O as the initial output of
the triggered subsystem because the model does not specify the port's initial output.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information
Parameter: CheckSSInitialOutputMsg
Value: "on” | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

2-77

2 Simulink Configuration Parameters: Advanced

2-78

Application Setting
Efficiency No impact
Safety precaution On

Related Examples

Diagnosing Simulation Errors

“Conditionally Executed Subsystems”
“Underspecified initialization detection” on page 2-81
Data Validity Diagnostics on page 9-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

Detect multiple driving blocks executing at the same time step

Detect multiple driving blocks executing at the same time step

Description

Select the diagnostic action to take when the software detects a Merge block with more
than one driving block executing at the same time step.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

+ Connecting the inputs of a Merge block to multiple driving blocks that execute at the
same time step can lead to inconsistent results for both simulation and generated
code. Set Detect multiple driving blocks executing at the same time step to
error to avoid such situations.

+ If Underspecified initialization detection is set to Simplified, this parameter
is disabled, and Simulink software automatically uses the strictest setting (error) for
this diagnostic. Multiple driving blocks executing at the same time step always result
in an error.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

2-79

2 Simulink Configuration Parameters: Advanced

Command-Line Information

Parameter: MergeDetectMultiDrivingBlocksExec
Value: "none” | "warning® | "error”
Default: "error*

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency No impact
Safety precaution error
See Also

Merge

Related Examples

. Diagnosing Simulation Errors
. “Check usage of Merge blocks”
. “Underspecified initialization detection” on page 2-81
. Data Validity Diagnostics on page 9-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-80

Underspecified initialization detection

Underspecified initialization detection

Description

Select how Simulink software handles initialization of initial conditions for conditionally
executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time
Integrator blocks.

Category: Diagnostics

Settings
Default: Simplified

Classic
Initial conditions are initialized the same way they were prior to R2008b.
Simplified
Initial conditions are initialized using the enhanced behavior, which can improve the
consistency of simulation results.

Tips

+ Use Classic to ensure compatibility with previous releases of Simulink. Use
Simplified to improve the consistency of simulation results, especially for models
that do not specify initial conditions for conditional subsystem output ports, and
for models that have conditionally executed subsystem output ports connected to S-
functions. For more information, see “Simplified Initialization Mode”and “Classic
Initialization Mode”.

For existing models, MathWorks® recommends using the Model Advisor to migrate
your model to the new settings. To migrate your model to simplified initialization
mode, run the following Model Advisor checks:

* “Check usage of Merge blocks”

* “Check usage of Outport blocks”

+ “Check usage of Discrete-Time Integrator blocks”

+ “Check model settings for migration to simplified initialization mode”

2-81

2 Simulink Configuration Parameters: Advanced

2-82

For more information, see “Convert from Classic to Simplified Initialization Mode”.

When using Simplified initialization mode, you must set “Bus signal treated as
vector” on page 8-17 to error on the Connectivity Diagnostics pane.

Dependencies

Selecting Classic enables the following parameters:

Detect multiple driving blocks executing at the same time step
Check undefined subsystem initial output

Check runtime output of execution context

Selecting Simplified disables these parameters, and automatically sets Detect
multiple driving blocks executing at the same time step to error.

Command-Line Information

Parameter: UnderspecifiedInitializationDetection
Value: "Classic® | "Simplified”

Default: "Classic”

Recommended Settings

Application Setting
Debugging Simplified
Traceability Simplified
Efficiency Simplified
Safety precaution Simplified
See Also

Merge | Discrete-Time Integrator

Related Examples

“Convert from Classic to Simplified Initialization Mode”

“Conditional Subsystem Initial Output Values”

Underspecified initialization detection

“Conditionally Executed Subsystems”

“Simplified Initialization Mode”

“Classic Initialization Mode”

“Conditional Subsystem Output Values When Disabled”
Diagnosing Simulation Errors

Data Validity Diagnostics on page 9-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-83

2 Simulink Configuration Parameters: Advanced

Solver data inconsistency

2-84

Description

Select the diagnostic action to take if Simulink software detects S-functions that have
continuous sample times, but do not produce consistent results when executed multiple
times.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
+ Consistency checking can cause a significant decrease in performance (up to 40%).

+ Consistency checking is a debugging tool that validates certain assumptions made by
Simulink ODE solvers. Use this option to:

+ Validate your S-functions and ensure that they adhere to the same rules as
Simulink built-in blocks.

Determine the cause of unexpected simulation results.
* Ensure that blocks produce constant output when called with a given value of ¢
(time).

+ Simulink software saves (caches) output, the zero-crossing, the derivative, and state
values from one time step for use in the next time step. The value at the end of a time
step can generally be reused at the start of the next time step. Solvers, particularly
stiff solvers such as ode23s and odel5s, take advantage of this to avoid redundant

Solver data inconsistency

calculations. While calculating the Jacobian matrix, a stiff solver can call a block's
output functions many times at the same value of t.

When consistency checking is enabled, Simulink software recomputes the appropriate
values and compares them to the cached values. If the values are not the same, a
consistency error occurs. Simulink software compares computed values for these
quantities:

* Outputs
Zero crossings

* Derivatives
+ States

Command-Line Information
Parameter: ConsistencyChecking
Value: "none® | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency none
Safety precaution No impact

Related Examples

. Diagnosing Simulation Errors

. Choosing a Solver
. Solver Diagnostics on page 12-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-85

2 Simulink Configuration Parameters: Advanced

Block diagram contains disabled library links

2-86

Description

Select the diagnostic action to take when saving a model containing disabled library
links.

Category: Diagnostics

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram
may not contain the information you had intended.

error

Simulink software displays an error message. The model is not saved.
Tip

Use the Model Advisor Identify disabled library links check to find disabled
library links.

Command-Line Information
Parameter: SaveWithDisabledLinksMsg
Value: "none® | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

Block diagram contains disabled library links

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Disable or Break Links to Library Blocks”
. “Identify disabled library links”

. Saving a Model

. “Model Parameters”
. Solver Diagnostics on page 12-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-87

2 Simulink Configuration Parameters: Advanced

Block diagram contains parameterized library links

2-88

Description

Select the diagnostic action to take when saving a model containing parameterized
library links.

Category: Diagnostics

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram
may not contain the in formation you had intended.

error

Simulink software displays an error message. The model is not saved.

Tips

* Use the Model Advisor Identify parameterized library links check to find
parameterized library links.

Command-Line Information

Parameter: SaveWithParameterizedLinksMsg
Value: "none® | "warning® | "error*

Default: "none*

Recommended Settings

Application Setting
Debugging No impact

Block diagram contains parameterized library links

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Identify parameterized library links”
. Solver Diagnostics on page 12-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-89

2 Simulink Configuration Parameters: Advanced

InitinArrayFormatMsg

2-90

Description
Message behavior when the initial state is an array

Category: Diagnostics

Settings
Default: warning

warning

Simulink software displays a warning when the initial state is an array. If the order
of the elements in the array do not match the order in which blocks initialize, the
simulation can produce unexpected results.

error
Simulink software displays an error message when the initial state is an array.
none

Simulink software does not display a message when the initial state is an array.

Tips

* Avoid using an array for the initial state. If the order of the elements in the array
does not match the order in which blocks initialize, the simulation can produce
unexpected results. To promote deterministic simulation results, use the default
setting or set the diagnostic to error.

+ Instead of using array format for the initial state, use a format such as structure,
structure with time, or Dataset.

Command-Line Information
Parameter: InitlnArrayFormatMsg
Value: "none” | "warning® | "error*
Default: "warning”

InitlnArrayFormatMsg

Recommended Settings

Application Setting

Debugging Use the default setting of warning.
Traceability Use the default setting of warning.
Efficiency Use the default setting of warning.
Safety precaution Use the default setting of warning.

Related Examples
. “Initial state” on page 3-7
. “State Information”

. “Dataset Conversion for Logged Data”

2-91

2 Simulink Configuration Parameters: Advanced

Remove code from floating-point to integer conversions with
saturation that maps NaN to zero

Description
Remove code that handles floating-point to integer conversion results for NaN values.

Category: Optimization

Settings
Default: On

¥ On
Removes code when mapping from NaN to integer zero occurs. Select this check box if

code efficiency is critical to your application and the following conditions are true for
at least one block in the model:

+ Computing outputs or parameters of a block involves converting floating-point
data to integer or fixed-point data.

+ The Saturate on integer overflow check box is selected in the Block
Parameters dialog box.

Cavution: Execution of generated code might not produce the same results as
simulation.

™ ofr

Results for simulation and execution of generated code match when mapping from
NaN to integer zero occurs. The generated code is larger than when you select this
check box.

Tips

+ Selecting this check box reduces the size and increases the speed of the generated
code at the cost of producing results that do not match simulation in the case of NaN
values.

2-92

Remove code from floating-point to integer conversions with saturation that maps NaN to zero

+ Selecting this check box affects code generation results only for NaN values and cannot
cause code generation results to differ from simulation results for any other values.

Dependencies

* This parameter requires a Simulink Coder license.

+ For ERT-based targets, this parameter is enabled when you select the floating-
point numbers and non-finite numbers check boxes in the Code Generation >
Interface pane.

Command-Line Information
Parameter: EfficientMapNaN2IntZero

Value: "on” | "off"
Default: "on*

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution No recommendation

Related Examples
. “Remove Code That Maps NaN to Integer Zero” (Simulink Coder)
. “Optimization Pane: General” on page 4-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-93

2 Simulink Configuration Parameters: Advanced

Compiler optimization level

Description

Sets the degree of optimization used by the compiler when generating code for
acceleration.

Category: Optimization

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Specifies the compiler not to optimize code. This results in faster build times.
Optimizations on (faster runs)

Specifies the compiler to generate optimized code. The generated code will run faster,
but the model build will take longer than if optimizations are off.

Tips
* The default Optimizations off is a good choice for most models. This quickly
produces code that can be used with acceleration.

* Set Optimizations on to optimize your code. The fast running code produced by
optimization can be advantageous if you will repeatedly run your model with the
accelerator.

Command-Line Information
Parameter: SimCompilerOptimization
Value: "on® | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact

2-94

Compiler optimization level

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Acceleration”

. “Interact with the Acceleration Modes Programmatically”

. “Customize the Acceleration Build Process”

. “Optimization Pane: General” on page 4-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-95

2 Simulink Configuration Parameters: Advanced

Verbose accelerator builds

Description

Select the amount of information displayed during code generation for Simulink
Accelerator mode, referenced model Accelerator mode, and Rapid Accelerator mode.

Category: Optimization

Settings
Default: Off

I off
Display limited amount of information during the code generation process.
¥ On

Display progress information during code generation, and show the compiler options
in use.

Command-Line Information
Parameter: AccelVerboseBuild
Value: "on" | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Controlling Verbosity During Code Generation”

2-96

Verbose accelerator builds

“Optimization Pane: General” on page 4-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-97

2 Simulink Configuration Parameters: Advanced

Implement logic signals as Boolean data (vs. double)

2-98

Description
Controls the output data type of blocks that generate logic signals.

Category: Optimization

Settings
Default: On

¥ On

Blocks that generate logic signals output a signal of boolean data type. This reduces
the memory requirements of generated code.

I off

Blocks that generate logic signals output a signal of double data type. This ensures
compatibility with models created by earlier versions of Simulink software.

Tips

+ Setting this option on reduces the memory requirements of generated code, because
a Boolean signal typically requires one byte of storage compared to eight bytes for a
double signal.

* Setting this option off allows the current version of Simulink software to run models
that were created by earlier versions of Simulink software that supported only signals
of type double.

* This optimization affects the following blocks:

+ Logical Operator block — This parameter affects only those Logical Operator
blocks whose Output data type parameter specifies Inherit: Logical (see
Configuration Parameters: Optimization). If this parameter is selected,
such blocks output a signal of boolean data type; otherwise, such blocks output a
signal of double data type.

Relational Operator block — This parameter affects only those Relational
Operator blocks whose Output data type parameter specifies Inherit:

Implement logic signals as Boolean data (vs. double)

Logical (see Configuration Parameters: Optimization). If this
parameter is selected, such blocks output a signal of boolean data type;
otherwise, such blocks output a signal of double data type.

Combinatorial Logic block — If this parameter is selected, Combinatorial Logic
blocks output a signal of boolean data type; otherwise, they output a signal of
double data type. See Combinatorial Logic in the Simulink Reference for an
exception to this rule.

Hit Crossing block — If this parameter is selected, Hit Crossing blocks output a
signal of boolean data type; otherwise, they output a signal of double data type.

Dependencies

* This parameter is disabled for models created with a version of Simulink software
that supports only signals of type double.

Command-Line Information
Parameter: BooleanDataType

Value: "on® | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

Safety precaution On

Related Examples
. “Optimize Generated Code Using Boolean Data for Logical Signals” (Simulink

Coder)
. “Optimization Pane: General” on page 4-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-99

2 Simulink Configuration Parameters: Advanced

Block reduction

Description
Reduce execution time by collapsing or removing groups of blocks.

Category: Optimization

Settings
Default: On

¥ On
Simulink software searches for and reduces the following block patterns:
* Redundant type conversions — Unnecessary type conversion blocks, such as
an Int type conversion block with an input and output of type int.
* Dead code — Blocks or signals in an unused code path.

+ Fast-to-slow Rate Transition block in a single-tasking system — Rate
Transition blocks with an input frequency faster than its output frequency.

I off

Simulink software does not search for block patterns that can be optimized.
Simulation and generated code are not optimized.

Tips

* When you select Block reduction, Simulink software collapses certain groups of
blocks into a single, more efficient block, or removes them entirely. This results in
faster execution during model simulation and in generated code.

* Block reduction does not change the appearance of the source model.

* Tunable parameters do not prevent a block from being reduced by dead code
elimination.

* Once block reduction takes place, Simulink software does not display the sorted order
for blocks that have been removed.

2-100

Block reduction

+ If you have a Simulink Coder license, block reduction is intended to remove only the
generated code that represents execution of a block. Other supporting data, such as
definitions for sample time and data types might remain in the generated code.

Dead Code Elimination

Any blocks or signals in an unused code path are eliminated from generated code.

* The following conditions need to be met for a block to be considered part of an unused
code path:

+ All signal paths for the block end with a block that does not execute. Examples of
blocks that do not execute include Terminator blocks, disabled Assertion blocks,
S-Function blocks configured for block reduction, and To Workspace blocks when
MAT-file logging is disabled for code generation.

+ No signal paths for the block include global signal storage downstream from the
block.

* Tunable parameters do not prevent a block from being reduced by dead code
elimination.

O
In Ot

MeverDeadCodelGain

3

In2 -
Always DeadCodeGain Terminator

O

Gain Scope

* Consider the signal paths in the following block diagram.

If you check Block reduction, Simulink Coder software responds to each signal path
as follows:

2-101

2 Simulink Configuration Parameters: Advanced

For Signal Path... Simulink Coder Software...

Inl to Outl Generates code because dead code elimination conditions are
not met.
In2 to Terminator Does not generate code because dead code elimination

conditions are met.

In3 to Scope Generates code if MAT-file logging is enabled and eliminates
code if MAT-file logging is disabled.

Command-Line Information
Parameter: BlockReduction
Value: "on” | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging Off for simulation or during development
No impact for production code generation

Traceability Off

Efficiency On

Safety precaution No recommendation

Related Examples

. “Remove Code for Blocks That Have No Effect on Computational Results” (Simulink
Coder)

. “Eliminate Dead Code Paths in Generated Code” (Simulink Coder)
. “Time-Based Scheduling” (Simulink Coder)

. “Performance” (Simulink Coder)
. “Optimization Pane: General” on page 4-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-102

Conditional input branch execution

Conditional input branch execution

Description

Improve model execution when the model contains Switch and Multiport Switch blocks.

Category: Optimization

Settings

Default: On

|7On

Executes only the blocks required to compute the control input and the data input
selected by the control input. This optimization speeds execution of code generated
from the model. Limits to Switch block optimization:

I ofr

Only blocks with -1 (inherited) or inf (Constant) sample time can participate.
Blocks with outputs flagged as test points cannot participate.

No multirate block can participate.

Blocks with states cannot participate.

Only S-functions with option SS_OPTION_CAN_BE_CALLED CONDITIONALLY set
can participate.

Executes all blocks driving the Switch block input ports at each time step.

Command-Line Information

Parameter: Conditional lyExecutelnputs
Value: "on”" | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging No impact

2-103

2 Simulink Configuration Parameters: Advanced

Application Setting

Traceability On

Efficiency On (execution), No impact (ROM, RAM)
Safety precaution No impact

Related Examples

. “Use Conditional Input Branch Execution” (Simulink Coder)

. “Conditional Subsystems”

. “Performance” (Simulink Coder)

. “Optimization Pane: General” on page 4-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-104

Use memset to initialize floats and doubles to 0.0

Use memset to initialize floats and doubles to 0.0

Description
Specify whether to generate code that explicitly initializes floating-point data to 0.0.

Category: Optimization

Settings
Default: On (GUI), "off" (command-line)

|7On

Uses memset to clear internal storage for floating-point data to integer bit pattern
0 (all bits 0), regardless of type. If your compiler and target CPU both represent
floating-point zero with the integer bit pattern O, this parameter to gain execution
and ROM efficiency.

I off

Generates code to explicitly initialize storage for data of types Float and double to
0.0. The resulting code is slightly less efficient than code generated when you select
the option.

You should not select this option if you need to ensure that memory allocated for C
MEX S-function wrappers is initialized to zero.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: InitFlItsAndDblsToZero

Value: "on”" | "off"
Default: "off"

Note: The command-line values are reverse of the settings values. Therefore, "on” in the
command line corresponds to the description of “Off” in the settings section, and "off"
in the command line corresponds to the description of “On” in the settings section.

2-105

2 Simulink Configuration Parameters: Advanced

2-106

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (GUI), "off" (command-line) (execution,
ROM), No impact (RAM)

Safety precaution No impact

Related Examples

. “Optimize Generated Code Using memset Function” (Simulink Coder)

. “Optimization Pane: General” on page 4-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

Signal storage reuse

Signal storage reuse

Description
Reuse signal memory.

Category: Optimization

Settings
Default: On

|7On

Simulink software reuses memory buffers allocated to store block input and output
signals, reducing the memory requirement of your real-time program.

I ofr

Simulink software allocates a separate memory buffer for each block's outputs.
This makes all block outputs global and unique, which in many cases significantly
increases RAM and ROM usage.

Tips
* This option applies only to signals with storage class Auto.

+ Signal storage reuse can occur only among signals that have the same data type.

+ Clearing this option can substantially increase the amount of memory required to
simulate large models.

+ Clear this option if you need to:

Debug a C-MEX S-function

+ Use a Floating Scope or a Floating Scope block with the Floating display option
selected to inspect signals in a model that you are debugging

+ Simulink software opens an error dialog if Signal storage reuse is enabled and you
attempt to use a Floating Scope or floating Display block to display a signal whose
buffer has been reused.

2-107

2 Simulink Configuration Parameters: Advanced

2-108

Dependencies
This parameter enables:

+ “Enable local block outputs” on page 2-109
+ “Reuse local block outputs” on page 2-111
+ “Eliminate superfluous local variables (Expression folding)” on page 2-113

+ “Optimize global data access” on page 2-117 if you have an Embedded Coder
license.

Command-Line Information
Parameter:OptimizeBlocklOStorage

Value: "on® | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

Safety precaution No impact

Related Examples

. “Minimize Computations and Storage for Intermediate Results at Block Outputs”
(Simulink Coder)

. “Performance” (Simulink Coder)

. “Optimization Pane: Signals and Parameters” on page 5-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

Enable local block outputs

Enable local block outputs

Description
Specify whether block signals are declared locally or globally.

Category: Optimization

Settings
Default: On

|7On

Block signals are declared locally in functions.

I off
Block signals are declared globally.

Tips

+ If it is not possible to declare an output as a local variable, the generated code
declares the output as a global variable.

+ If you are constrained by limited stack space, you can turn Enable local block
outputs off and still benefit from memory reuse.

Dependencies

* This parameter requires a Simulink Coder license.

* This parameter is enabled by Signal storage reuse.
Command-Line Information

Parameter: LocalBlockOutputs

Value: "on® | "off"
Default: "on*

2-109

2 Simulink Configuration Parameters: Advanced

2-110

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting
Off
Off
On

No impact

. “Enable and Reuse Local Block Outputs in Generated Code” (Simulink Coder)

. “Performance” (Simulink Coder)
. “Optimization Pane: Signals and Parameters” on page 5-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

Reuse local block outputs

Reuse local block outputs

Description
Specify whether Simulink Coder software reuses signal memory.

Category: Optimization

Settings
Default: On
¥ On

+ Simulink Coder software reuses signal memory whenever possible, reducing stack
size where signals are being buffered in local variables.

* Selecting this parameter trades code traceability for code efficiency.

I off

Signals are stored in unique locations.
Dependencies
This parameter:
+ Is enabled by Signal storage reuse.
* Requires a Simulink Coder license.
Command-Line Information

Parameter: BufferReuse
Value: "on”" | "off"
Default: "on”

Recommended Settings

Application Setting
Debugging Off

2-111

2 Simulink Configuration Parameters: Advanced

Application Setting
Traceability Off
Efficiency On

Safety precaution No impact

Related Examples
. “Enable and Reuse Local Block Outputs in Generated Code” (Simulink Coder)

. “Performance” (Simulink Coder)
. “Optimization Pane: Signals and Parameters” on page 5-2
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-112

Eliminate superfluous local variables (Expression folding)

Eliminate superfluous local variables (Expression folding)

Description
Collapse block computations into single expressions.

Category: Optimization

Settings
Default: On
¥ On

Enables expression folding.

Eliminates local variables, incorporating the information into the main code
statement.

Improves code readability and efficiency.

™ ofr
Disables expression folding.
Dependencies

This parameter requires a Simulink Coder license.

This parameter is enabled by Signal storage reuse.

Command-Line Information
Parameter: ExpressionFolding

Value: "on® | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging Off

2-113

2 Simulink Configuration Parameters: Advanced

Application Setting

Traceability No impact for simulation or during development
Off for production code generation

Efficiency On

Safety precaution No impact

Related Examples

. “Minimize Computations and Storage for Intermediate Results at Block Outputs”
(Simulink Coder)

. “Performance” (Simulink Coder)

. “Optimization Pane: Signals and Parameters” on page 5-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-114

Reuse global block outputs

Reuse global block outputs

Description
Reuse global memory for block outputs.

Category: Optimization

Settings
Default: On
v On

+ Software reuses signal memory whenever possible, reducing global variable use.

+ Selecting this parameter trades code traceability for code efficiency.

I off

Signals are stored in unique locations.
Dependencies

This parameter:

* Is enabled by “Signal storage reuse” on page 2-107.
* Requires an Embedded Coder license.
* Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalBufferReuse
Value: "on”" | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging Off

2-115

2 Simulink Configuration Parameters: Advanced

Application Setting

Traceability Off

Efficiency On (execution, ROM, RAM)
Safety precaution No impact

Related Examples

. “Reuse Global Block Outputs in the Generated Code” (Embedded Coder)
. “Performance” (Embedded Coder)

. “Optimization Pane: Signals and Parameters” on page 5-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-116

Optimize global data access

Optimize global data access

Description
Select global variable optimization.

Category: Optimization

Settings
Default: None

None
Use default optimizations.
Use global to hold temporary results
Maximize use of global variables.
Minimize global data access

Minimize use of global variables by using local variables to hold intermediate values.

Dependencies

* This parameter is enabled by “Signal storage reuse” on page 2-107.
+ This parameter requires an Embedded Coder license.

+ Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalVariableUsage

Value: "None™ | "Use global to hold temporary results® | "Minimize
global data access”

Default: "None*®

Recommended Settings

Application Setting
Debugging No impact

2-117

2 Simulink Configuration Parameters: Advanced

2-118

Application
Traceability
Efficiency

Safety precaution

Related Examples

Setting
No impact

"Use global to hold temporary results*®
(RAM), "Minimize global data access”
(ROM)

No impact

. “Optimize Global Variable Usage” (Embedded Coder)
. “Performance” (Embedded Coder)

. “Optimization Pane: Signals and Parameters” on page 5-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

Simplify array indexing

Simplify array indexing

Description
Replace multiply operations in array indices when accessing arrays in a loop.

Category: Optimization

Settings
Default: Off

Y On
In array indices, replace multiply operations with add operations when accessing
arrays in a loop in the generated code. When the original signal is multidimensional,
the Embedded Coder generates one-dimensional arrays, resulting in multiply
operations in the array indices. Using this setting eliminates costly multiply
operations when accessing arrays in a loop in the C/C++ program. This optimization
(commonly referred to as strength reduction) is particularly useful if the C/C++
compiler on the target platform does not have similar functionality. No appearance
of multiply operations in the C/C++ program does not imply that the C/C++ compiler
does not generate multiply instructions.

Off

Leave multiply operations in array indices when accessing arrays in a loop.

Dependencies

This parameter:

* Requires a Embedded Coder license to generate code.

+ Appears only for ERT-based targets.

Command-Line Information
Parameter: StrengthReduction
Value: "on® | "off"

Default: "off"

2-119

2 Simulink Configuration Parameters: Advanced

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Simplify Multiply Operations in Array Indexing” (Embedded Coder)
. “Performance” (Embedded Coder)
. “Optimization Pane: Signals and Parameters” on page 5-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-120

Ensure responsiveness

Ensure responsiveness

Description
Enables responsiveness checks in code generated for MATLAB Function blocks.

Category: Simulation Target

Settings
Default: On

Y1 On

Enables periodic checks for Ctrl+C breaks in code generated for MATLAB Function
blocks. Also allows graphics refreshing.

Off

Disables periodic checks for Ctrl+C breaks in code generated for MATLAB Function
blocks. Also disables graphics refreshing.

Cavution: Without these checks, the only way to end a long-running execution might
be to terminate the MATLAB session.

Command-Line Information
Parameter: SimCtriC

Value: "on” | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging On

Traceability No recommendation
Efficiency No recommendation

2-121

2 Simulink Configuration Parameters: Advanced

Application Setting

Safety precaution No recommendation

Related Examples
. “Control Run-Time Checks”
. “Model Configuration Parameters: Simulation Target” on page 16-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-122

Compile-time recursion limit for MATLAB functions

Compile-time recursion limit for MATLAB functions

Description

For compile-time recursion, control the number of copies of a function that are allowed
in the generated code. This parameter applies to MATLAB code in a MATLAB Function
block, a Stateflow chart, or a System object associated with a MATLAB System block.

Category: Simulation Target > Advanced parameters

Settings
Default: 50

* To disallow recursion in the MATLAB code, set this parameter to 0.

+ The default compile-time recursion limit is high enough for most recursive functions
that require compile-time recursion. If code generation fails because of the recursion
limit, and you want compile-time recursion, increase the limit. Alternatively, you can
change your MATLAB code so that the code generator uses run-time recursion.

Command-Line Information
Parameter: CompileTimeRecursionLimit
Type: integer

Value: valid value

Default: 50

More About

. “Code Generation for Recursive Functions”
. “Compile-Time Recursion Limit Reached”

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-123

2 Simulink Configuration Parameters: Advanced

Enable run-time recursion for MATLAB functions

2-124

Description

Allow recursive functions in code that is generated for MATLAB code that contains
recursive functions. This parameter applies to MATLAB code in a MATLAB Function
block, a Stateflow chart, or a System object associated with a MATLAB System block.

Some coding standards, such as MISRA®, do not allow recursion. To increase the
likelihood of generating code that is compliant with MISRA C®, clear this option.

Category: Simulation Target > Advanced parameters

Settings
Default: On

Y1 On

Enables run-time recursion for code generation of MATLAB code that contains
recursive functions.

Off

Disables run-time recursion for code generation of MATLAB code that contains
recursive functions. If run-time recursion is disabled, and the MATLAB code requires
run-time recursion, code generation fails.

Command-Line Information
Parameter: EnableRuntimeRecursion
Value: "on" | "off"

Default: "on*

More About

. “Code Generation for Recursive Functions”

. “Compile-Time Recursion Limit Reached”

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

Dynamic memory allocation in MATLAB Function blocks

Dynamic memory allocation in MATLAB Function blocks

Description

Use dynamic memory allocation (malloc) for variable-size arrays whose size (in bytes)
1s greater than or equal to the dynamic memory allocation threshold. This parameter
applies to MATLAB code in a MATLAB Function block, a Stateflow chart, or a System
object™ associated with a MATLAB System block. This parameter does not apply to:

* Input or output signals
* Parameters
* Global variables

+ Discrete state properties of System objects associated with a MATLAB System block

Category: Simulation Target > Advanced parameters

Settings
Default: On (for GRT-based targets) | Off (for ERT-based targets)

Y1 On

Enables dynamic memory allocation.

Ooff

Disables dynamic memory allocation.
Dependency

Enables the Dynamic memory allocation threshold in MATLAB Function blocks
parameter.

Tips

+ Code that uses dynamic memory allocation can be less efficient than code that uses
static memory allocation. Unless your model requires dynamic memory allocation,
consider clearing this check box.

2-125

2 Simulink Configuration Parameters: Advanced

+ If sufficient memory is not available to satisfy a memory allocation request, dynamic
memory allocation can fail. The code generator does not check memory allocation
requirements. For safety-critical systems, the recommended setting for this
parameter is OFF.

Command-Line Information
Parameter: MATLABDynamicMemAl loc
Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Off
Safety precaution Off

Related Examples
. “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-126

Dynamic memory allocation threshold in MATLAB Function blocks

Dynamic memory allocation threshold in MATLAB Function blocks

Description

Specify a threshold for dynamic memory allocation. The code generator uses dynamic
memory allocation for variable-size arrays whose size (in bytes) is greater than or equal
to the threshold. This parameter applies to MATLAB code in a MATLAB Function block,
a Stateflow chart, or a System object associated with a MATLAB System block. This
parameter does not apply to:

* Input or output signals

+ Parameters

* Global variables

* Discrete state properties of System objects associated with a MATLAB System block

Category: Simulation Target > Advanced parameters

Settings

Default: 65536

* To specify the threshold, set this parameter to a positive integer.

* To use dynamic memory allocation for all variable-size arrays, set this parameter to 0.
Dependency

Dynamic memory allocation in MATLAB Function blocks enables this parameter.

Command-Line Information

Parameter: MATLABDynamicMemAl locThreshold
Type: integer

Value: integer value

Default: 65536

Recommended Settings

Application Setting
Debugging No impact

2-127

2 Simulink Configuration Parameters: Advanced

Application Setting

Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-128

Echo expressions without semicolons

Echo expressions without semicolons

Description

Enable run-time output in the MATLAB Command Window, such as actions that do not
terminate with a semicolon. This behavior applies to a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Category: Simulation Target

Settings
Default: On

Y1 On

Enables run-time output to appear in the MATLAB Command Window during
simulation.

Off

Disables run-time output from appearing in the MATLAB Command Window during
simulation.

Tip
+ If you disable run-time output, faster model simulation occurs.

Command-Line Information
Parameter: SFSimEcho

Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging On
Traceability No impact

2-129

2 Simulink Configuration Parameters: Advanced

Application Setting
Efficiency Off
Safety precaution No impact

Related Examples
. “Speed Up Simulation” (Stateflow)

“Model Configuration Parameters: Simulation Target” on page 16-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

2-130

Ensure memory integrity

Ensure memory integrity

Description

Detects violations of memory integrity while building MATLAB Function blocks and
stops simulation with a diagnostic.

Category: Simulation Target

Settings
Default: On

Y1 On

Detect violations of memory integrity while building MATLAB Function blocks and
stops simulation with a diagnostic message.

Off

Does not detect violations of memory integrity while building MATLAB Function
blocks.

Cavution: Without these checks, violations result in unpredictable behavior.

Tips
* The most likely cause of memory integrity issues is accessing an array out of bounds.

Only disable these checks if you are sure that all array bounds and dimension
checking is unnecessary.

Command-Line Information
Parameter: Simlntegrity
Value: "on*" | "off"

Default: "on”

2-131

2 Simulink Configuration Parameters: Advanced

2-132

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

. “Control Run-Time Checks”

Setting

On

No impact

No recommendation

On

“Model Configuration Parameters: Simulation Target” on page 16-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

Generate typedefs for imported bus and enumeration types

Generate typedefs for imported bus and enumeration types

Description

Determines typedef handling and generation for imported bus and enumeration data
types in Stateflow and MATLAB Function blocks.

Category: Simulation Target

Settings
Default: Off

41 On
The software will generate its own typedefs for imported bus and enumeration types.
Off

The software will not generate its own typedefs for imported bus and enumeration
types, and will use definitions in the included header file. This setting requires you
to include header files in Configuration Parameters, under Simulation Target >
Custom Code > Header file.

Tips

This selection applies if you are using imported bus or enumeration data types in
Stateflow and MATLAB Function blocks.

Command-Line Information

Parameter: SimGenlImportedTypeDefs
Value: "on® | "off"
Default: "off"

2-133

2 Simulink Configuration Parameters: Advanced

Simulation target build mode

2-134

Description

Specifies how you build the simulation target for a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Category: Simulation Target

Settings
Default: Incremental build

Incremental build

This option rebuilds only those portions of the target that you changed since the last
build.

Rebuild all (including libraries)

This option rebuilds the target, including libraries, from scratch.
Make without generating code

This option invokes the make process without generating code.
Clean all (delete generated code/executables)

This option deletes both generated source code and executable files.
Clean objects (delete executables only)

This option deletes only executable files.

Tips

* The default Incremental build is a good choice for most models. This action takes
place whenever you simulate your model.

+ Set Rebuild all (including libraries) if you have changed your compiler or
updated your object files since the last simulation. For example, use this option to
rebuild the simulation target to include custom code changes.

+ Set Make without generating code when you have custom source files that you
must recompile in an incremental build mechanism that does not detect changes in
custom code files.

Simulation target build mode

Command-Line Information

Parameter: SimBui ldMode

Value: "sf_incremental_build® | "sf_nonincremental_build® | "st _make" |
st _make clean”™ | "sf _make clean_objects”

Default: "sf_incremental_build”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Model Configuration Parameters: Simulation Target” on page 16-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-135

2 Simulink Configuration Parameters: Advanced

Use local custom code settings (do not inherit from main model)

2-136

Description

Specify if a library model can use custom code settings that are unique from the main
model.

Category: Simulation Target

Settings
Default: Off

Y1 On
Enables a library model to use custom code settings that are unique from the main
model.
Off

Disables a library model from using custom code settings that are unique from the
main model.

Dependency

This parameter is available only for library models that contain MATLAB Function
blocks, Stateflow charts, or Truth Table blocks. To access this parameter, in the
MATLAB Function Block Editor, select Tools > Open Simulation Target.

Command-Line Information
Parameter: SimUselLocalCustomCode
Value: "on”" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact

Use local custom code settings (do not inherit from main model)

Application Setting

Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. Including Custom C Code (Stateflow)
. “Model Configuration Parameters: Simulation Target” on page 16-2

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-137

2 Simulink Configuration Parameters: Advanced

Allow symbolic dimension specification

2-138

Description

Specify whether Simulink propagates dimension symbols throughout the model and
preserves these symbols in the propagated signal dimensions.

Category: Diagnostics

Settings
Default: On

Y1 On

Simulink propagates symbolic dimensions throughout the model and preserves
these symbols in the propagated signal dimensions. If you have an Embedded Coder
license, these symbols go into the generated code.

Off

Simulink does not propagate symbolic dimensions throughout the model nor preserve
these symbols in propagated signal dimensions.

Command-Line Information
Parameter: Al lowSymbolicDim
Value: "on® | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Allow symbolic dimension specification

Related Examples

. “Implement Dimension Variants for Array Sizes in Generated Code” (Embedded
Coder)
. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-139

2 Simulink Configuration Parameters: Advanced

Perform inplace updates for Bus Assignment blocks

2-140

Description
Reuse the input and output variables of Bus Assignment blocks if possible.

Category: Optimization

Settings
Default: On

Y On
Embedded Coder reuses the input and output variables of Bus Assignment blocks if
possible. Reusing these variables reduces data copies, conserves RAM consumption
and increases code execution speed.

Off

Embedded Coder does not reuse the input and output variables of Bus Assignment
blocks.

Dependency

* The parameter Signal Storage Reuse enables this parameter.
* This parameter requires an Embedded Coder license.

* This parameter appears only for ERT-based targets.

Command-Line Information

Parameter: BusAssignmentlnplaceUpdate
Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact

Perform inplace updates for Bus Assignment blocks

Application Setting

Traceability No impact
Efficiency On

Safety precaution No recommendation

Related Examples

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-141

2 Simulink Configuration Parameters: Advanced

Reuse buffers for Data Store Read and Data Store Write blocks

2-142

Description

Remove temporary buffers for Data Store Read and Data Store Write blocks. Use the
Data Store Memory block directly if possible.

Category: Optimization

Settings
Default: On

41 On
Embedded Coder reads directly from the Data Store Memory block and writes
directly to the Data Store Memory block if possible. Using the Data Store Memory
block directly eliminates data copies in the generated code conserving RAM
consumption and increasing code execution speed.

Off

Embedded Coder inserts buffers in the generated code for Data Store Read and Data
Store Write blocks.

Dependency

The parameter Signal Storage Reuse enables this parameter.
This parameter requires an Embedded Coder license.
This parameter appears only for ERT-based targets.

Command-Line Information
Parameter: OptimizeDataStoreBuffers
Value: "on® | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact

Reuse buffers for Data Store Read and Data Store Write blocks

Application Setting

Traceability Off

Efficiency On

Safety precaution No recommendation

Related Examples

. “Data copy reduction for Data Store Read and Data Store Write blocks” (Embedded
Coder)

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-143

2 Simulink Configuration Parameters: Advanced

Optimize block operation order in the generated code

2-144

Description
Reorder block operations in the generated code for improved code execution speed.

Category: Optimization

Settings
Default: No Block Reordering

Y| No Block Reordering
Embedded Coder does not reorder block operation order in the generated code to
create additional instances of buffer reuse.
Improved Code Execution Speed

Embedded Coder changes the block operation order in the generated code so that
more instances of buffer reuse can occur. Reusing buffers conserves RAM and ROM
consumption and improves code execution speed.

Dependency

* The parameter Signal Storage Reuse enables this parameter.
* This parameter requires an Embedded Coder license.
* This parameter appears only for ERT-based targets.

Command-Line Information
Parameter: OptimizeBlockOrder
Value: "Speed” | "off"
Default: "off"

Recommended Settings

Application Setting
Debugging No impact

Optimize block operation order in the generated code

Application Setting

Traceability No impact

Efficiency Improved Code Execution Speed
Safety precaution No recommendation

Related Examples

. “Remove Data Copies by Reordering Block Operations in the Generated Code”
(Embedded Coder)

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

2-145

Data Import/Export Parameters

3 Data Import/Export Parameters

Model Configuration Parameters: Data Import/Export

3-2

The Data Import/Export category includes parameters for configuring input data for
simulation (for example, for Inport blocks) and output data (for example, from Outport

blocks).

On the Configuration Parameters dialog box, the following configuration parameters
are on the Commonly Used tab on the Data Import/Export pane, or on the All
Parameters tab in the Data Import/Export category.

Parameter

Description

“Input” on page 3-5

Loads input data from a workspace before
the simulation begins.

“Initial state” on page 3-7

Loads the model initial states from a
workspace before simulation begins.

“Time” on page 3-10

Saves simulation time data to the specified
variable during simulation.

“States” on page 3-12

Saves state data to the specified MATLAB
variable during a simulation.

“Output” on page 3-14

Saves signal data to the specified MATLAB
variable during simulation.

“Final states” on page 3-16

Saves the logged states of the model at
the end of a simulation to the specified
MATLAB variable.

“Format” on page 3-18

Select the data format for saving states,
output, and final states data.

“Limit data points” on page 3-21

Limit the number of data points to export
to the MATLAB workspace.

“Decimation” on page 3-23

Specify that Simulink software output only
every N points, where N is the specified
decimation factor.

“Save complete SimState in final state” on
page 3-25

At the end of a simulation, Simulink saves
the complete set of states of the model,
including logged states, to the specified
MATLAB variable.

Model Configuration Parameters: Data Import/Export

Parameter

Description

“Signal logging” on page 3-27

Globally enable or disable signal logging to
the workspace for this model.

“Data stores” on page 3-30

Globally enable or disable logging of Data
Store Memory block variables for this
model.

“Log Dataset data to file” on page 3-32

Log data to MAT-file.

“Output options” on page 3-35

Select options for generating additional
output signal data for variable-step solvers.

“Refine factor” on page 3-37

Specify how many points to generate
between time steps to refine the output.

“Output times” on page 3-39

Specify times at which Simulink software
should generate output in addition to, or
instead of, the times of the simulation steps
taken by the solver used to simulate the
model.

“Single simulation output” on page 3-41

Enable the single-output format of the sim
command.

“Logging intervals” on page 3-43

Set intervals for logging

“Record logged workspace data in
Simulation Data Inspector” on page
3-46

Specify whether to send signals marked for
logging to the Simulation Data Inspector
after simulation pauses or completes.

“Write streamed signals to workspace” on
page 3-48

Specify whether to write streamed signal
data to the base workspace

Related Examples
. Importing Data from a Workspace

. “Export Simulation Data”

. “Export Signal Data Using Signal Logging”

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

3-3

3 Data Import/Export Parameters

Data Import/Export Overview

3-4

The Data Import/Export pane allows you to import input signal and initial state data
from a workspace and export output signal and state data to the MATLAB workspace
during simulation. This capability allows you to use standard or custom MATLAB
functions to generate a simulated system's input signals and to graph, analyze, or
otherwise postprocess the system's outputs.

Configuration

1 Specify the data to load from a workspace before simulation begins.

2 Specify the data to save to the MATLAB workspace after simulation completes.

Tips

* To open the Data Import/Export pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Data Import/Export.

* For more information importing and exporting data, see “Load Signal Data for
Simulation” and “Save Runtime Data from Simulation”.

* See the documentation of the sim command for some capabilities that are available
only for programmatic simulation.
To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

COET g ==y

Related Examples
. “Model Configuration Parameters: Data Import/Export” on page 3-2

Input

Input

Description
Loads input data from a workspace for a simulation.

Category: Data Import/Export

Settings
Default: Off, [t,u]

|7On

Loads data from a workspace.

Specify a MATLAB expression for the data to be imported from a workspace. The
Simulink software resolves symbols used in this specification as described in “Symbol
Resolution”.

See “Load Data to Root-Level Input Ports” for information on how to use this field.

™ off

Does not load data from a workspace.

Tips

+ If youuse a Simulink.SimulationData.Dataset object that includes a
matlab.i1o.datastore.SimulationDatastore object as an element, then the
data stored in persistent storage is streamed in from a file. For more information, see
“Load Big Data for Simulations”.

* You must select the Input check box before entering input data.

+ Simulink software linearly interpolates or extrapolates input values as necessary if
the Interpolate data option is selected for the corresponding Inport.

* The use of the Input box is independent of the setting of the Format list on the Data
Import/Export pane.

* For more information about using the Input parameter to load signal data to root-
level inputs, see “Load Data to Root-Level Input Ports”.

3-5

3 Data Import/Export Parameters

3-6

Command-Line Information
Parameter: LoadExternal Input
Value: "on" | "off"

Default: "off"

Parameter: External Input
Type: character vector

Value: any valid value

Default: "[t,u]"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “Load Data to Root-Level Input Ports”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

Initial state

Initial state

Description
Loads the model initial states from a workspace before simulation begins.

Category: Data Import/Export

Settings
Default: Off, xInitial

|7On

Simulink software loads initial states from a workspace.

Specify the name of a variable that contains the initial state values, for example, a
variable containing states saved from a previous simulation.

Use the structur, structure-with-time or Dataset format data option to specify
initial states if you want to accomplish any of the following:

+ Associate initial state values directly with the full path name to the states. This
eliminates errors that could occur if Simulink software reorders the states, but
the initial state array is not correspondingly reordered.

+ Assign a different data type to each state's initial value.
* Initialize only a subset of the states.

+ Initialize the states of a top model and the models that it references

See “Load State Information” for more information.
ot
Simulink software does not load initial states from a workspace.
Tips
* The initial values that the workspace variable specifies override the initial values

that the model specifies (the values that the initial condition parameters of those
blocks in the model that have states specify).

3-7

3 Data Import/Export Parameters

3-8

Selecting the Initial state check box does not result in Simulink initializing discrete
states in referenced models.

Avoid using an array for an initial state. If the order of the elements in the array does
not match the order in which blocks initialize, the simulation can produce unexpected
results. To promote deterministic simulation results, use the InitInArrayMsg
diagnostic default setting of warning or set the diagnostic to error.

Instead of array format for the initial state, consider using a
Simulink.SimulationData.Dataset object, structure, structure with time, or a
SimState.

If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Dataset Conversion for Logged Data”.

If you use Dataset format, you can specify the discrete state bus type by setting the
state label to DSTATE_NVBUS (non-virtual bus) or DSTATE_VBUS (virtual bus).

Command-Line Information
Parameter: LoadlnitialState

Value: "on® | "off"

Default: "off"

Parameter: InitialState

Type: variable (character vector) or vector
Value: any valid value

Default: "xInitial*”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

Importing Data from a Workspace

Initial state

“State Information”
“Dataset Conversion for Logged Data”

“Model Configuration Parameters: Data Import/Export” on page 3-2

3-9

3 Data Import/Export Parameters

Time

3-10

Description
Saves simulation time data to the specified variable during simulation.

Category: Data Import/Export

Settings
Default: On, tout

|7On

Simulink software exports time data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store time data. See “Export
Simulation Data” for more information.
I off

Simulink software does not export time data to the MATLAB workspace during
simulation.

Tips
* You must select the Time check box before entering the time variable.

+ Simulink software saves the output to the MATLAB workspace at the base sample
rate of the model. Use a To Workspace block if you want to save output at a different
sample rate.

* The Time, State, Output area includes parameters for specifying a limit on the
number of data points to export and the decimation factor.

* To specify an interval for logging, use the Logging intervals parameter.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Dataset Conversion for Logged Data”.

* Do not use a variable name that is the same as a Simulink.SimulationOutput object
function name or property name.

Time

Command-Line Information
Parameter: SaveTime

Value: "on" | "off"

Default: "on*

Parameter: TimeSaveName
Type: character vector

Value: any valid value

Default: " tout”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

. “Export Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

Setting

No impact

No impact

No recommendation

No recommendation

3-11

3 Data Import/Export Parameters

States

3-12

Description
Saves state data to the specified MATLAB variable during a simulation.

Category: Data Import/Export

Settings
Default: Off, xout

¥ On
Simulink software exports state data to the MATLAB workspace during simulation.
Specify the name of the MATLAB variable used to store state data. See Importing
and Exporting States for more information.

I off

Simulink does not export state data during simulation.

Tips

+ Simulink saves the states in a MATLAB workspace variable having the specified
name.

* The saved data has the format that you specify with the Format parameter.

+ If you select the States check box, Simulink logs fixed-point states only if you set the
Format parameter to Dataset.

+ Dataset format does not support:

+ Logging states information inside a function-call subsystem
Rapid accelerator simulation mode
* Code generation
+ Simulink creates empty variables for state logging (xout) if both of these conditions
apply:

* You enable States.

States

* A model has no states.
+ To specify an interval for logging, use the Logging intervals parameter.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Dataset Conversion for Logged Data”.

Command-Line Information
Parameter: SaveState

Value: "on*" | "off"

Default: "off"

Parameter: StateSaveName
Type: character vector

Value: any valid value

Default: "xout”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “State Information”
. “Comparison of Signal Loading Techniques”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-13

3 Data Import/Export Parameters

Output

3-14

Description
Saves signal data to the specified MATLAB variable during simulation.

Category: Data Import/Export

Settings
Default: On, yout

|7On

Simulink software exports signal data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store signal data. See “Export
Simulation Data” for more information.
I off

Simulink software does not export signal data during simulation.

Tips
* You must select the Output check box before entering the output variable.

* Simulink software saves the output to the MATLAB workspace at the base sample
rate of the model, if you set the Format parameter to a value other than Dataset.
For Dataset format, logging uses the rate set for each Outport block.

+ The Time, State, Output area includes parameters for specifying the format and
other characteristics of the saved data (for example, the format for the saved data and
the decimation factor).

* To specify an interval for logging, use the Logging intervals parameter.

* To log fixed-point data, set the Format parameter to Dataset. If you set the Format
parameter to a value other than Dataset, Simulink logs fixed-point data as double.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Dataset Conversion for Logged Data”.

Output

* For the active variant condition, Simulink creates a Dataset object with the logged
data. For inactive variant conditions, Simulink creates MATLAB timeseries with
zero samples.

* When you invoke a sim command inside a function, the output logged by the function
is in the function workspace. To be able to access that output in the base workspace,
add a command such as this after the sim command:

assignin("base", "yout" ,yout);

* Do not use a variable name that is the same as a Simulink.SimulationOutput object
function name or property name.

Command-Line Information
Parameter: SaveOutput
Value: "on*" | "off"

Default: "on*

Parameter: OutputSaveName
Type: character vector

Value: any valid value

Default: “"yout*®

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “Export Simulation Data”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

. “Dataset Conversion for Logged Data”

3-15

3 Data Import/Export Parameters

Final states

Description

Saves the logged states of the model at the end of a simulation to the specified MATLAB
variable.

Category: Data Import/Export

Settings
Default: Off, xFinal

v On
Simulink software exports final logged state data to the MATLAB workspace during

simulation.

Specify the name of the MATLAB variable in which to store the values of these final
states. See Importing and Exporting States for more information.

I off

Simulink software does not export the final state data during simulation.

Tips
* You must select the Final states check box before entering the final states variable.

* Simulink software saves the final states in a MATLAB workspace variable having the
specified name.

* The saved data has the format that you specify with the Format parameter.
* Simulink creates empty variables for final state logging (xFinal) if both of these
conditions apply:
You enable Final states.
A model has no states.

+ Using the Final states is not always sufficient for complete and accurate restoration
of a simulation state. The SimState object contains the set of all variables that are

3-16

Final states

related to the simulation of a model. For details, see “Save complete SimState in final
state” on page 3-25 and “Save and Restore Simulation State as SimState”.

See “State Information” for more information.

If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Dataset Conversion for Logged Data”.

Command-Line Information
Parameter: SaveFinalState
Value: "on" | "off"

Default: "off"

Parameter: FinalStateName
Type: character vector

Value: any valid value

Default: "xFinal*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

Importing and Exporting States
“Model Configuration Parameters: Data Import/Export” on page 3-2

“Dataset Conversion for Logged Data”

3-17

3 Data Import/Export Parameters

Format

3-18

Description
Select the data format for saving states, output, and final states data.

Category: Data Import/Export

Settings
Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the logged
data as MATLAB timeseries objects.

Array
The format of the data is a matrix. Each row corresponds to a simulation time step.
Structure

For logging output, the format of the data is a structure that contains substructures
for each port. Each port substructure contains signal data for the corresponding port.
For logging states, the structure contains a substructure for each block that has a
state.

Structure with time

The format of the data is a structure that has two fields: a time field and a signals
field. The time field contains a vector of simulation times. The signals field contains
the same data as the Structure format.

Tips
+ The Dataset format for logged state and root outport data:

+ Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logged data in MATLAB without a
Simulink license.

Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow signal logging.

Format

* For states logging, Dataset format does not support:

Logging states information inside a function-call subsystem
Rapid accelerator simulation mode
* Code generation

* You can use array format to save model outputs and states only if the outputs:

+ Are all scalars or all vectors (or all matrices for states)
+ Are all real or all complex

Have the same data type

Use the Dataset, Structure, or Structure with time output formats if your
model outputs and states do not meet these conditions.

* In rapid accelerator mode, Dataset format does not work for state and final states.

+ If you enable the Save complete SimState in final state parameter, then the
format does not apply to final states data.

* Simulink can read back simulation data saved to the workspace in the Structure

with time output format. See “Load Data to Root-Level Input Ports” for more
information.

Command-Line Information

Parameter: SaveFormat

Value: "Array” | "Structure® | "StructureWithTime" | "Dataset”
Default: "Dataset”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

. “Export Simulation Data”

3-19

3 Data Import/Export Parameters

. “Time, State, and Output Data Format”
. “Dataset Conversion for Logged Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-20

Limit data points

Limit data points

Description
Limit the number of data points to export to the MATLAB workspace.

Category: Data Import/Export

Settings
Default: Off, 1000

|7On

Limits the number of data points exported to the MATLAB workspace to the number
that you specify.

Specify the maximum number of data points to export to the MATLAB workspace.
At the end of the simulation, the MATLAB workspace contains the last N points
generated by the simulation.

I off

Does not limit the number of data points.

Tips

+ Saving data to the MATLAB workspace can consume memory. Use this parameter to
limit the number of samples saved to help avoid this problem.

* You can also apply a Decimation factor to skip a selected number of samples.

Command-Line Information
Parameter: LimitDataPoints
Value: "on” | "off"

Default: "off*

Parameter: MaxDataPoints
Type: character vector

Value: any valid value
Default: "1000*"

3-21

3 Data Import/Export Parameters

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “Export Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-22

Decimation

Decimation

Description

Specify that Simulink software output only every N points, where N is the specified
decimation factor.

Category: Data Import/Export

Settings
Default: 1

* The default value (1) specifies that all data points are saved.
* The value must be a positive integer greater than zero.

* Simulink software outputs data only at the specified number of data points. For
example, specifying 2 saves every other data point, while specifying 10 saves just one
In ten data points.

+ At the end of the simulation, the total number of data points is reduced by the factor
specified.

Tips
+ Saving data to the MATLAB workspace can consume memory. Use this parameter to

limit the number of samples saved to help avoid this problem.

* You can also use the Limit data points to last parameter to help resolve this
problem.

Command-Line Information
Parameter: Decimation
Type: character vector

Value: any valid value
Default: "1°

Recommended Settings

Application Setting
Debugging No impact

3-23

3 Data Import/Export Parameters

Application Setting

Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “Export Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-24

Save complete SimState in final state

Save complete SimState in final state

Description

At the end of a simulation, Simulink saves the complete set of states of the model,
including logged states, to the specified MATLAB variable.

Category: Data Import/Export

Settings
Default: Off, xFinal

|7On

Simulink software exports the complete set of final state data (i.e., the SimState) to
the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of the final
states. See Importing and Exporting States for more information.

I off

Simulink software exports the final logged states during simulation.

Tips

* You must select the Final states check box to enable the Save complete SimState
in final state option.

* Simulink saves the final states in a MATLAB workspace variable having the specified
name.

Dependencies

This parameter is enabled by Final states.

Command-Line Information
Parameter: SaveCompleteFinalSimState
Value: "on”" | "off"

3-25

3 Data Import/Export Parameters

Default: "off"

Parameter: FinalStateName
Type: character vector

Value: any valid value
Default: "xFinal*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. Importing and Exporting States
. “Limitations of SimState”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-26

Signal logging

Signal logging

Description
Globally enable or disable signal logging to the workspace for this model.

Category: Data Import/Export

Settings
Default: On, logsout

¥ On
Enables signal logging to the MATLAB workspace during simulation.
Specify the name of the signal logging object used to record logged signal data in the

MATLAB workspace. For more information, see “Specify a Name for Signal Logging
Data”.

I off
Disables signal logging to the MATLAB workspace during simulation.

Tips
* You must select the Signal logging check box before entering the signal logging
variable.

+ Simulink saves the signal data in a MATLAB workspace variable with the specified
name.

* The saved data is a Simulink.SimulationData.Dataset object.

* When signal logging is disabled, signals marked for logging still send data to the
Simulation Data Inspector.

* Simulink does not support signal logging for the following types of signals:

Output of a Function-Call Generator block
Signal connected to the input of a Merge block

3-27

3 Data Import/Export Parameters

3-28

* Outputs of Trigger and Enable blocks
+ If you select Signal logging, you can use the Configure Signals to Log button to

open the Signal Logging Selector. You can use the Signal Logging Selector to:
Review all signals in a model hierarchy that are configured for logging

* Override signal logging settings for specific signals
Control signal logging throughout a model reference hierarchy in a streamlined
way

You can use the Signal Logging Selector with Simulink and Stateflow signals.

For details about the Signal Logging Selector, see “View Logging Configuration with

Signal Logging Selector” and “Override Signal Logging Settings”.

* Do not use a variable name that is the same as a Simulink.SimulationOutput object
function name or property name.

Dependencies

This parameter enables the Configure Signals to Log button.

Command-Line Information
Parameter: SignallLogging
Value: "on*" | "off"

Default: "on*

Parameter: SignalLoggingName
Type: character vector

Value: any valid value

Default: " logsout”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Signal logging

Related Examples

“Export Signal Data Using Signal Logging”

“Dataset Conversion for Logged Data”

“Model Configuration Parameters: Data Import/Export” on page 3-2

3-29

3 Data Import/Export Parameters

Data stores

Description
Globally enable or disable logging of Data Store Memory block variables for this model.

Category: Data Import/Export

Settings
Default: On, dsmsout

¥ On
Enables data store logging to the MATLAB workspace during simulation.

Specify the name of the data store logging object to use for recording logged data
store data. The data store logging object must be in the MATLAB workspace.

I off
Disables data store logging to the MATLAB workspace during simulation.

Tips

* Simulink saves the data in a MATLAB workspace variable having the specified name.

* The saved data has the Simul ink.SimulationData.Dataset format.

* See “Supported Data Types, Dimensions, and Complexity for Logging Data
Stores”“Data Store Logging Limitations” and “Data Store Logging Limitations”.

Dependencies

Select the Data stores check box before entering the data store logging variable.

Command-Line Information
Parameter: DSMLogging
Value: "on*" | "off"

Default: "on*

Parameter: DSMLoggingName

3-30

Data stores

Type: character vector
Value: any valid value
Default: "dsmOut*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation
See Also

Data Store Memory | Simulink.SimulationData.DataStoreMemory

Related Examples
. “Log Data Stores”
. “Export Signal Data Using Signal Logging”

“Model Configuration Parameters: Data Import/Export” on page 3-2

3-31

3 Data Import/Export Parameters

Log Dataset data to file

3-32

Description

Log data to MAT-file.

Category: Data Import/Export

Settings

Default: "off"

|7On

Enables logging data that uses Dataset format to a MAT-file.

Use this feature when logging large amounts of data that can cause memory issues.
For details, see “Log Data to Persistent Storage”.

Specify a character vector for the path to the file to use for logging signals and states.
Do not use a file name from one locale in a different locale.

I off

Disables logging data to a MAT-file.

Tips

* To use the Log Dataset data to file option:

Select one or more of these kinds of logging:

States

Final states
Signal logging
Output

Data stores

+ Ifyou are logging states or output data, set the Format parameter to Dataset.

Log Dataset data to file

+ If you select the Final states parameter, clear the Save complete SimState in
final state parameter.

To control whether logged data is sent to visualization tools such as the Simulation
Data Inspector, use the Visual izeLoggedSignalsWhenLoggingToFile model
parameter. By default, the data is not streamed to visualization tools when logging to
file is enabled. For details, see “Model Parameters”.

To access in the MAT-file the Simulink.SimulationData.Dataset data for

a logging variable (for example, the logsout variable for signal logging data),
you can create a Simulink.SimulationData.DatasetRef object. Using a
Simulink.SimulationData.DatasetRef object to access signal logging and states
data stored in the MAT-file loads the data into memory incrementally (signal by
signal).

You can load the MAT-file contents into memory without creating a
Simulink.SimulationData.DatasetRef object. You can load either the whole
file or a Dataset object in that file using the MATLAB load command. However,
to load data signal by signal or to load individual signals incrementally, use a
Simulink.SimulationData.DatasetRef object.

Dependencies

Select the Log Dataset data to file check box before entering the path to the MAT-file
for logging.

Command-Line Information
Parameter: LoggingToFile
Value: "on® | "off"

Default: "off"

Parameter: LoggingFileName
Value: any valid value

Default: "out.mat”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation

3-33

3 Data Import/Export Parameters

Application Setting
Safety precaution No recommendation
See Also

Simulink.SimulationData.DatasetRef | Simulink.SimulationData.Dataset | load

Related Examples

. “Log Data to Persistent Storage”

. “Load Big Data for Simulations”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-34

Output options

Output options

Description
Select options for generating additional output signal data for variable-step solvers.

Category: Data Import/Export

Settings
Default: Refine output

Refine output

Generates data output between, as well as at, simulation times steps. Use Refine
factor to specify the number of points to generate between simulation time steps.
For more information, see “Refine Output”.

Produce additional output

Generates additional output at specified times. Use Output times to specify the
simulation times at which Simulink software generates additional output.

Produce specified output only

Use Output times to specify the simulation times at which Simulink generates
output, in addition to the simulation start and stop times.

Tips

+ These settings can force the solver to calculate output values for times that it would
otherwise have omitted because the calculations were not needed to achieve accurate
simulation results. These extra calculations can cause the solver to locate zero
crossings that it would otherwise have missed.

* For additional information on how Simulink software calculates outputs for these
three options, see “Samples to Export for Variable-Step Solvers”.

* Do not use a variable name that is the same as a Simulink.SimulationOutput object
function name or property name.

Dependencies

This parameter is enabled only if the model specifies a variable-step solver (see Solver
Type on page 17-10).

3-35

3 Data Import/Export Parameters

Selecting Refine output enables the Refine factor parameter.

Selecting Produce additional outputor Produce specified output only
enables the Output times parameter.

Command-Line Information

Parameter: OutputOption

Value: "RefineOutputTimes” | "AdditionalOutputTimes” |
"SpecifiedOutputTimes”

Default: "RefineOutputTimes”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

. “Output Options”

. “Refine factor” on page 3-37
. “Refine Output”

. “Export Simulation Data”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-36

Refine factor

Refine factor

Description
Specify how many points to generate between time steps to refine the output.

Category: Data Import/Export

Settings
Default: 1

* The default refine factor is 1, meaning that no extra data points are generated.

+ A refine factor of 2 provides output midway between the time steps, as well as at the
steps.

Tip

Simulink software ignores this option for discrete models. This is because the value of
data between time steps is undefined for discrete models.

Dependency

This parameter is enabled only if you select Refine output as the value of Output
options.

Command-Line Information
Parameter: Refine
Type: character vector

Value: any valid value
Default: "1°

Recommended Settings

Application Setting
Debugging No impact

3-37

3 Data Import/Export Parameters

Application Setting

Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “Refine Output”
. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-38

Output times

Output times

Description

Specify times at which Simulink software should generate output in addition to, or
instead of, the times of the simulation steps taken by the solver used to simulate the
model.

Category: Data Import/Export

Settings
Default: []

* Enter a matrix containing the times at which Simulink software should generate
output in addition to, or instead of, the simulation steps taken by the solver.

+ If the value of Output options is Produce additional output, for the default
value [], Simulink generates no additional data points.

+ If the value of Output options is Produce specified output only, for the
default value [] Simulink generates no data points.

Tips
+ The Produce additional output option generates output at the specified times,
as well as at the regular simulation steps.

* The Produce specified output only option generates output at the specified
times.

* Discrete models define outputs only at major time steps. Therefore, Simulink software
logs output for discrete models only at major time steps. If the Output times field
specifies other times, Simulink displays a warning at the MATLAB command line.

+ For additional information on how Simulink software calculates outputs for the
Output options Produce specified output only and Produce additional
output options, see “Samples to Export for Variable-Step Solvers”.

Dependency

This parameter is enabled only if the value of Output options is Produce additional
output or Produce specified output only.

3-39

3 Data Import/Export Parameters

Command-Line Information
Parameter: OutputTimes
Type: character vector

Value: any valid value
Default: "[]°

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. “Refine Output”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-40

Single simulation output

Single simulation output

Description

Enable the single-output format of the sim command.

Category: Data Import/Export

Settings

Default: off

When you enable this option:

Simulink returns all simulation outputs within a single
Simulink_SimulationOutput object, providing that you simulate by choosing
Simulation > Start from the model window.

You must specify the variable name of the single output object which will contain the
simulation outputs. Use the text field next to the check box to specify this name.

The sim command becomes compatible with the parfor command, in terms of
transparency issues.

The setting overrides the Dataset format for signal logging data.

Tips

To use the Logging intervals parameter, you must select Single simulation
output.

If you select this option and you simulate by entering the sim command at the
command line of the MATLAB command window, then the output variables will not
be stored in the object "out”. Instead, they will be stored in their respective variable
names.

The method who of the Simul ink.SimulationOutput object returns the list of
variables that the object contains.

Use the get method of the Simulink.SimulationOutput object to access the
variables that the object contains.

Command-Line Information
Parameter: ReturnWorkspaceOutputs

3-41

3 Data Import/Export Parameters

Value: "on™ | "off" |
Default: "off"

Parameter: ReturnWorkspaceOutputsName
Type: character vector

Value: Any valid value

Default: "Out”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

. “Run Simulations Programmatically”
. “Run Multiple Simulations”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-42

Logging intervals

Logging intervals

Description

Set intervals for logging

Category: Data Import/Export

Settings

Default:[-inT, inf]

Use a real double matrix with two columns.

The matrix elements cannot be NaN.

You can specify as many intervals as you want.

Each row defines the start and end times for an interval.

Intervals must be disjoint and ordered. For example, you can specify these three
intervals: [1,5;6,10;11,15]

Tips

The logging intervals apply to data logged for:
Time
States

* Output

+ Signal logging
* The To Workspace block
The To File block

The logging intervals do not apply to final state logged data, scopes or streaming data
to the Simulation Data Inspector.

PIL simulation mode does not support logging intervals. Simulink ignores specified
logging intervals, without displaying a warning.

SIL simulation mode supports logging intervals for data logged to a
Simulink.SimulationOutput object. In SIL mode, Simulink ignores specified
logging intervals, without displaying a warning, for:

3-43

3 Data Import/Export Parameters

3-44

+ Data logged to a To File block

+ MAT-file logging (enabled with Configuration Parameters > All Parameters >
MAT-file logging)

* The interval times that meet either of these two conditions do not return logged data:

* The time is before the simulation start time.

* The time is after the simulation stop time.

Interval times that meet these conditions do not cause a warning.

+ All logged data, except for data logged to a To File block, is stored in the object you
specify for the Single simulation output parameter. Data for the To File block
reflects the specified intervals, but is stored in the file associated with the block.

+ To prevent logging of To Workspace blocks, set Logging intervals to an empty
matrix ([]).

+ If you set Decimation to 2, then the logged data is for alternating times in the
intervals. In other words, data is for times 2, 4, and 8.

+ If you set Limit data points to last to 4, then the logged data is for the last four
times in the intervals. In other words, data is for times 4, 7, 8, and 9.

+ Simulation Stepper rollback reflects logging intervals. If you change the logging
intervals of a simulation before rollback, logging:
* Includes data starting with the first step after the rollback

+ Does not include data for time steps that are outside of the original logging
intervals

Dependency

This parameter is enabled only if you select the Single simulation output parameter.

Command-Line Information
Parameter: Logginglntervals

Type: real double matrix with two columns
Default: [-inT, inf]

Logging intervals

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact

No impact

No recommendation

No recommendation

. “Run Simulations Programmatically”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-45

3 Data Import/Export Parameters

Record logged workspace data in Simulation Data Inspector

3-46

Description

Specify whether to send signals marked for logging T to the Simulation Data Inspector
after simulation pauses or completes.

Category: Data Import/Export

Settings
Default: Off

|7On

Record logged signals and send signal data to the Simulation Data Inspector

after a simulation pauses or completes. This setting turns on the record state on
the Simulation Data Inspector button on the Simulink Editor toolbar. After a
simulation is recorded, the logged simulation data appears in the Runs pane of the
Simulation Data Inspector.

I off

Do not record logged signals during simulation. This setting turns off the record state
on the Simulation Data Inspector button on the Simulink Editor toolbar.

Tip
To open the Simulation Data Inspector, on the Simulink Editor toolbar, click the

Simulation Data Inspector button arrow and select Simulation Data Inspector.

Command-Line Information
Parameter: InspectSignallLogs
Value: "on® | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact

Record logged workspace data in Simulation Data Inspector

Application Setting

Traceability No impact
Efficiency No recommendation
Safety precaution No recommendation

Related Examples

. “Load Signal Data for Simulation”

. “Record Data with the Simulation Data Inspector”

. “Inspect Simulation Data”

. “Customize the Simulation Data Inspector Interface”

. “Model Configuration Parameters: Data Import/Export” on page 3-2

3-47

3 Data Import/Export Parameters

Write streamed signals to workspace

3-48

Description
Specify whether to write streamed signal data to the base workspace

Category: Data Import/Export

Settings
Default: Off

|7On

Send signals marked for streaming to the base workspace after simulation. The
dataset is saved in the base workspace as a Simulink_SimulationData.Signal
object as the name specified in the text field. The default name is "streamout”.

I off

Do not send signals marked for streaming to the base workspace after simulation.
Tip

The Write streamed signals to workspace parameter appears in the Configuration
Parameters > All Parameters tab.

Command-Line Information
Parameter: StreamToWorkspace
Value: "on”" | "off"

Default: "off"

Parameter: StreamVariableName
Type: character vector

Value: any valid value

Default: "streamout”

Related Examples
. “Log Signals to the Simulation Data Inspector”

Write streamed signals to workspace

“Model Configuration Parameters: Data Import/Export” on page 3-2

3-49

Optimization Parameters

4 Optimization Parameters

Optimization Pane: General

The Optimization > General pane includes the following parameters:

“Application lifespan (days)” on page 4-4

“Use division for fixed-point net slope computation” on page 4-7

“Use floating-point multiplication to handle net slope corrections” on page 4-9
“Default for underspecified data type” on page 4-11

“Optimize using the specified minimum and maximum values” on page 4-13
“Remove root level I/0 zero initialization” on page 4-16

“Remove internal data zero initialization” on page 4-18

“Remove code from floating-point to integer conversions that wraps out-of-range
values” on page 4-20

“Remove code that protects against division arithmetic exceptions” on page 4-22

Related Examples

“Model Configuration Parameters: Advanced Parameters” on page 2-2

Optimization Pane: General Tab Overview

Optimization Pane: General Tab Overview

Set up optimizations for a model's active configuration set. Optimizations are set for both
simulation and code generation.

Tips

* To open the Optimization pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Optimization.

* Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system. Selecting a GRT-based or ERT-based system target file
changes the available options. ERT-based target optimizations require a Embedded
Coder license when generating code. See the Dependencies sections below for
licensing information for each parameter.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

-

Related Examples

. “Optimization Pane: General” on page 4-2
. “Perform Acceleration”
. “Performance” (Simulink Coder)

4-3

4 Optimization Parameters

Application lifespan (days)

Description

Specify how long (in days) an application that contains blocks depending on elapsed or
absolute time should be able to execute before timer overflow.

Category: Optimization

Settings

Default: auto
Min: Must be greater than zero
Max: inf

Enter a positive (nonzero) scalar value (for example, 0.5) or inF.

If you use Embedded Coder and select an ERT target for your model, the underlying
value for auto is 1. If you are generating production code, you should set the value of this
parameter based on your model.

If you use Simulink Coder and select a GRT target for your model, the underlying value
for auto is Inf.

This parameter is ignored when you are operating your model in external mode, have
MAT-file logging enabled, or have a continuous sample time because a 64 bit timer is
required in these cases.

Tips
+ Specifying a lifespan, along with the simulation step size, determines the data type
used by blocks to store absolute time values.

* For simulation, setting this parameter to a value greater than the simulation time
will ensure time does not overflow.

+ Simulink software evaluates this parameter first against the model workspace. If this
does not resolve the parameter, Simulink software then evaluates it against the base
workspace.

* The Application lifespan also determines the word size used by timers in the
generated code, which can lower RAM usage. For more information, see “Control

4-4

Application lifespan (days)

Memory Allocation for Time Counters” (Simulink Coder) in the Simulink Coder
documentation.

* Application lifespan, when combined with the step size of each task, determines the
data type used for integer absolute time for each task, as follows:

+ If your model does not require absolute time, this option affects neither simulation
nor the generated code.

+ If your model requires absolute time, this option optimizes the word size used for
storing integer absolute time in generated code. This ensures that timers do not
overflow within the lifespan you specify. If you set Application lifespan to inf,
two uint32 words are used.

If your model contains fixed-point blocks that require absolute time, this option
affects both simulation and generated code.

For example, using 64 bits to store timing data enables models with a step size of
0.001 microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001 seconds)
for one day would require a 32-bit timer (but it could continue running for 49 days).

+ A timer will allocate 64 bits of memory if you specify a value of inf.

* To minimize the amount of RAM used by time counters, specify a lifespan no longer
than necessary.

+ For code generation, must be the same for parent and referenced models. For
simulation, the setting can be different for the parent and referenced models.

+ Optimize the size of counters used to compute absolute and elapsed time.
Command-Line Information

Parameter: LifeSpan

Type: character vector

Value: positive (nonzero) scalar value or " inf*
Default: "auto*®

Recommended Settings

Application Setting
Debugging No impact

4-5

4 Optimization Parameters

4-6

Application Setting
Traceability No impact
Efficiency Finite value
Safety precaution inf

Related Examples

“Optimize Memory Usage for Time Counters” (Simulink Coder)
“Time-Based Scheduling and Code Generation” (Simulink Coder)
“Timers in Asynchronous Tasks” (Simulink Coder)
“Optimization Pane: General” on page 4-2

“Performance” (Simulink Coder)

Use division for fixed-point net slope computation

Use division for fixed-point net slope computation

Description

The Fixed-Point Designer™ software performs net slope computation using division to
handle net slopes when simplicity and accuracy conditions are met.

Category: Optimization

Settings
Default: OFF
Off

Performs net slope computation using integer multiplication followed by shifts.
On
Performs net slope computation using a rational approximation of the net slope. This

results in an integer multiplication and/or division when simplicity and accuracy
conditions are met.

Use division for reciprocals of integers only

Performs net slope computation using division when the net slope can be represented
by the reciprocal of an integer and simplicity and accuracy conditions are met.

Tips
* This optimization affects both simulation and code generation.

* When a change of fixed-point slope is not a power of two, net slope computation is
necessary. Normally, net slope computation uses an integer multiplication followed by
shifts. Enabling this new optimization replaces the multiplication and shifts with an
integer division or an integer multiplication and division under certain simplicity and
accuracy conditions.

* Performing net slope computation using division is not always more efficient than
using multiplication followed by shifts. Ensure that the target hardware supports
efficient division.

* To ensure that this optimization occurs:

4 Optimization Parameters

4-8

+ Set the word length of the block so that the software can perform division using
the long data type of the target hardware. That setting avoids use of multiword
operations.

+ Set the Signed integer division rounds to configuration parameter on the
Hardware Implementation pane to Zero or Floor. The optimization does not
occur if you set this parameter to Undefined.

+ Set the Integer rounding mode parameter of the block to Simplest or to the
value of the Signed integer division rounds to configuration parameter setting
on the Hardware Implementation pane.

Dependency

This parameter requires a Fixed-Point Designer license.
Command-Line Information
Parameter: UseDivisionForNetSlopeComputation

Value: "off" | "on" | "UseDivisionForReciprocalsOflntegersOnly”
Default: "off"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (when target hardware supports efficient
division)
Off (otherwise)

Safety precaution No impact

Related Examples
. “Net Slope Computation” (Fixed-Point Designer)

. “Optimization Pane: General” on page 4-2

Use floating-point multiplication to handle net slope corrections

Use floating-point multiplication to handle net slope corrections

Description

The Fixed-Point Designer software uses floating-point multiplication to perform net slope
correction for floating-point to fixed-point casts.

Category: Optimization

Settings
Default: Off

Y1 On

Use floating-point multiplication to perform net slope correction for floating-point to
fixed-point casts.

Off

Use division to perform net slope correction for floating-point to fixed-point casts.

Tips
+ This optimization affects both simulation and code generation.

* When converting from floating point to fixed point, if the net slope is not a power of
two, slope correction using division improves precision. For some processors, use of
multiplication improves code efficiency.

Dependencies

* This parameter requires a Fixed-Point Designer license.
Command-Line Information
Parameter: UseFloatMulNetSlope

Value: "on® | "off"
Default: "off"

4-9

4 Optimization Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (when target hardware supports efficient
multiplication)
Off (otherwise)

Safety precaution No recommendation

Related Examples
. “Floating-Point Multiplication to Handle a Net Slope Correction” (Simulink Coder)

. “Optimization Pane: General” on page 4-2

4-10

Default for underspecified data type

Default for underspecified data type

Description

Specify the default data type to use for inherited data types if Simulink software could
not infer the data type of a signal during data type propagation.

Category: Optimization

Settings
Default: double

double

Sets the data type for underspecified data types during data type propagation to
double. Simulink uses double as the data type for inherited data types.

single

Sets the data type for underspecified data types during data type propagation to
single. Simulink uses single as the data type for inherited data types.

Tips
+ This setting affects both simulation and code generation.

* For embedded designs that target single-precision processors, set this parameter to
single to avoid the introduction of double data types.

+ Use the Model Advisor Identify questionable operations for strict single-precision
design check to identify the double-precision usage in your model.

Command-Line Information

Parameter: DefaultUnderspecifiedDataType
Value: "double” | "single”

Default: "double*

Recommended Settings

Application Setting

Debugging No impact

4-11

4 Optimization Parameters

4-12

Application Setting
Traceability No impact
Efficiency single (when target hardware supports efficient

single computations)
double (otherwise)

Safety precaution

No impact

Related Examples

. “Underspecified data types” on page 9-11
. “Validate a Single-Precision Model”

. “Optimization Pane: General” on page 4-2

Optimize using the specified minimum and maximum values

Optimize using the specified minimum and maximum values

Description

Optimize generated code using the specified minimum and maximum values for signals
and parameters in the model.

Category: Optimization

Settings

Default: Off

41 On

Optimizes the generated code using range information derived from the minimum
and maximum specified values for signals and parameters in the model.

Off

Ignores specified minimum and maximum values when generating code.

Tips

To detect mismatches between model and generated code simulations that arise from
the use of this parameter, before running normal, accelerator, software-in-the-loop
(SIL), or processor-in-the-loop (PIL) (Embedded Coder) simulations, set Diagnostics
> Data Validity > Simulation range checking to Warning or Error.

Specify minimum and maximum values for signals and parameters in the model for:

Inport and Outport blocks.
+ Block outputs.
+ Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks.
+ Simulink.Signal objects.
This optimization does not take into account minimum and maximum values specified

for:

* Merge block inputs. To work around this, use a Simulink.Signal object on the
Merge block output and specify the range on this object

4-13

4 Optimization Parameters

4-14

* Bus elements.

+ Conditionally-executed subsystem (such as a triggered subsystem) block outputs
that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial

value specified for use only when the system is not triggered. In this case, the
optimization cannot use the range of the block output because the range might not
cover the initial value of the block.

If you use the Polyspace® Code Prover™software to verify code generated using

this optimization, it might mark code that was previously green as orange. For
example, if your model contains a division where the range of the denominator does
not include zero, the generated code does not include protection against division by
zero. Polyspace Code Prover might mark this code orange because it does not have
information about the minimum and maximum values specified for the inputs to the
division.

The Polyspace Code Prover software does automatically capture some minimum
and maximum values specified in the MATLAB workspace, for example, for
Simulink.Signal and Simulink.Parameter objects. In this example, to provide
range information to the Polyspace Code Prover software, use a Simulink.Signal
object on the input of the division and specify a range that does not include zero.

The Polyspace Code Prover software stores these values in a Data Range Specification
(DRS) file. However, they do not capture all minimum and maximum values specified
in your Simulink model. To provide additional min/max information to Polyspace
Code Prover, you can manually define a DRS file. For more information, see the
Polyspace Code Prover documentation.

If you are using double-precision data types and the Code Generation > Interface
> Support non-finite numbers configuration parameter is selected, this
optimization does not occur.

If your model contains multiple instances of a reusable subsystem and each instance
uses input signals with different specified minimum and maximum values, this
optimization might result in different generated code for each subsystem so code
reuse does not occur. Without this optimization, the Simulink Coder software
generates code once for the subsystem and shares this code among the multiple
instances of the subsystem.

The Model Advisor Check safety-related optimization settings check generates
a warning if this option is selected. For many safety critical applications, it is

Optimize using the specified minimum and maximum values

not acceptable to remove dead code automatically because this might result in
requirements without traceable code. For more information, see Check safety-related
optimization settings (Simulink Verification and Validation).

+ Enabling this optimization improves the ability of the Fixed-Point Designer software
to eliminate unnecessary utility functions and saturation code from the generated
code.

Dependencies

* This parameter appears for ERT-based targets only.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: UseSpecifiedMinMax
Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution No recommendation

Related Examples

. “Optimize Generated Code Using Minimum and Maximum Values” (Embedded
Coder)
. “Optimize Generated Code Using Specified Minimum and Maximum Values”

(Fixed-Point Designer)

. “Optimization Pane: General” on page 4-2

4-15

4 Optimization Parameters

Remove root level 1/0 zero initialization

4-16

Description

Specify whether to generate initialization code for root-level inports and outports set to
Z€ro.

Category: Optimization

Settings
Default: Off (GUI), "on" (command-line)
v On
Does not generate initialization code for root-level inports and outports set to zero.

I off

Generates initialization code for all root-level inports and outports. Use the default:

* To initialize memory allocated for C MEX S-function wrappers to zero.

* To initialize all internal and external data to zero.

Note: Generated code never initializes data of ImportedExtern or
ImportedExternPointer storage classes, regardless of configuration parameter
settings.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: ZeroExternalMemoryAtStartup
Value: "off" | "on"

Default: "on*

Remove root level I/O zero initialization

Note: The command-line values are reverse of the settings values. Therefore, "on” in the
command line corresponds to the description of “Off” in the settings section, and "off"
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (GUI), off (command line) (execution, ROM),
No impact (RAM)

Safety precaution Off (GUI), on (command line)

Related Examples

. “Remove Initialization Code for Root-Level Inports and Outports Set to Zero”
(Embedded Coder)

. “Optimization Pane: General” on page 4-2

. “Performance” (Simulink Coder)

4-17

4 Optimization Parameters

Remove internal data zero initialization

Description

Specify whether to generate initialization code for internal work structures, such as block
states and block outputs, to zero.

Category: Optimization

Settings
Default: Off (GUI), "on" (command-line)

|7On

Does not generate code that initializes internal work structures to zero. An example
of when you might select this parameter is to test the behavior of a design during
warm boot—a restart without full system reinitialization.

Selecting this parameter does not guarantee that memory is in a known state each
time the generated code begins execution. When you run a model or generated S-
function multiple times, each run can produce a different answer, even when calling
the model initialization function in an attempt to reset memory.

If want to get the same answer on every run from a generated S-function, enter the
command clear SFcnNam or clear mex in the MATLAB Command Window before
each run.

I off

Generates code that initializes internal work structures to zero. You should use the
default:

+ To ensure that memory allocated for C MEX S-function wrappers is initialized to
Zero

+ For safety critical applications that require that all internal and external data be
initialized to zero
Dependencies

* This parameter appears only for ERT-based targets.

4-18

Remove internal data zero initialization

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: ZerolnternalMemoryAtStartup
Value: "off" | "on”

Default: "on*

Note: The command-line values are reverse of the settings values. Therefore, "on” in the
command line corresponds to the description of “Off” in the settings section, and "off"
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (GUI), off (command line), (execution, ROM),
No impact (RAM)

Safety precaution Off (GUI), on (command line)

Related Examples

. “Eliminate Zero Initialization Code for Internal Data” (Embedded Coder)
. “Optimization Pane: General” on page 4-2

. “Performance” (Simulink Coder)

4-19

4 Optimization Parameters

Remove code from floating-point to integer conversions that wraps
out-of-range values

Description

Remove wrapping code that handles out-of-range floating-point to integer conversion
results.

Category: Optimization

Settings
Default: Off

|7On

Removes code when out-of-range conversions occur. Select this check box if code
efficiency is critical to your application and the following conditions are true for at
least one block in the model:

+ Computing the outputs or parameters of a block involves converting floating-point
data to integer or fixed-point data.

+ The Saturate on integer overflow check box is cleared in the Block Parameters
dialog box.

Caution: Execution of generated code might not produce the same results as
simulation.

I off

Results for simulation and execution of generated code match when out-of-range
conversions occur. The generated code is larger than when you select this check box.

Tips

* Selecting this check box reduces the size and increases the speed of the generated
code at the cost of potentially producing results that do not match simulation in the
case of out-of-range values.

4-20

Remove code from floating-point fo integer conversions that wraps out-of-range values

+ Selecting this check box affects code generation results only for out-of-range values
and cannot cause code generation results to differ from simulation results for in-range
values.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information
Parameter: EfficientFloat2IntCast

Value: "on® | "off"
Default: "off"

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On (execution, ROM), No impact (RAM)
Safety precaution No recommendation

Related Examples

. “Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-
Range Values” (Simulink Coder)

. “Optimization Pane: General” on page 4-2

4-21

4 Optimization Parameters

Remove code that protects against division arithmetic exceptions

4-22

Description

Specify whether to generate code that guards against division by zero and INT_MIN/-1
operations for integers and fixed-point data.

For more information on division arithmetic exceptions, see “Division Arithmetic
Exceptions in Generated Code” (Embedded Coder).

Category: Optimization

Settings
Default: On

|7On

Does not generate code that guards against division by zero and INT_MIN/-1
operations for integers and fixed-point data. To retain bit-true agreement between
simulation results and results from generated code, ensure that your model never
produces division by zero or INT_MIN/-1 operations, where the quotient cannot be
represented in the data type.

™ off

Generates code that guards against division by zero and INT_MIN/-1 operations for
integers and fixed-point data.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: NoFixptDivByZeroProtection
Value: "on® | "off"

Default: "on*

Remove code that protects against division arithmetic exceptions

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

Safety precaution Off

Related Examples

. “Remove Code That Guards Against Division Exceptions for Integers and Fixed-
Point Data” (Embedded Coder)

. “Division Arithmetic Exceptions in Generated Code” (Embedded Coder)
. “Optimization Pane: General” on page 4-2

. “Performance” (Simulink Coder)

4-23

Optimization Parameters: Signals and
Parameters

5 Optimization Parameters: Signals and Parameters

Optimization Pane: Signals and Parameters

The Optimization > Signals and Parameters pane includes the following parameters
when you select a GRT-based system target file:

Code generation

Default parameter behavior: |Tunable V] ’Conﬂgure... Inline invariant signals

Use memcpy for vector assignment Memcpy threshold (bytes): 64
Loop unrolling threshold: 5

Maximum stack size (bytes): Inherit from target -

The Optimization > Signals and Parameters pane includes the following parameters
when you select an ERT-based system target file:

Code generation

Default parameter behavior: [Inlined '] ’Configure...] [7] Inline invariant signals

Use memcpy for vector assignment Memcpy threshold (bytes): &4

[C] Pack Boolean data into bitfields

Loop unrolling threshold: 5

Maximum stack size (bytes): Inherit from target -
Pass reusable subsystem outputs as: [Individual arguments. ']
Parameter structure: [NonHierarchicaI N]

+ “Default parameter behavior” on page 5-5

* “Inline invariant signals” on page 5-7

+ “Use memcpy for vector assignment” on page 5-9
* “Memcpy threshold (bytes)” on page 5-11

+ “Pack Boolean data into bitfields” on page 5-13

+ “Bitfield declarator type specifier” on page 5-15

* “Loop unrolling threshold” on page 5-17

+ “Maximum stack size (bytes)” on page 5-19

+ “Pass reusable subsystem outputs as” on page 5-21

Optimization Pane: Signals and Parameters

+ “Parameter structure” on page 5-23

+ “Model Parameter Configuration Dialog Box” on page 5-25

5-3

5 Optimization Parameters: Signals and Parameters

Optimization Pane: Signals and Parameters Tab Overview

5-4

Set up optimizations for a model's active configuration set.

Tips

* To open the Optimization: Signals and Parameters pane, in the Simulink Editor,
select Simulation > Model Configuration Parameters > Optimization >
Signals and Parameters.

* Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system. Selecting a GRT-based or ERT-based system target file
changes the available options. ERT-based target optimizations require a Embedded
Coder license when generating code. See the Dependencies sections below for
licensing information for each parameter.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

COET p er

Related Examples
. “Optimization Pane: Signals and Parameters” on page 5-2

. “Performance” (Simulink Coder)

Default parameter behavior

Default parameter behavior

Description

Transform numeric block parameters into constant inlined values in the generated code.

Category: Optimization

Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined

Set Default parameter behavior to Inlined to reduce global RAM usage and
increase efficiency of the generated code. The code does not allocate memory to
represent numeric block parameters such as the Gain parameter of a Gain block.
Instead, the code inlines the literal numeric values of these block parameters.

Tunable

Set Default parameter behavior to Tunable to enable tunability of numeric block
parameters in the generated code. The code represents numeric block parameters
and variables that use the storage class Auto, including numeric MATLAB variables,
as tunable fields of a global parameters structure.

Tips

Whether you set Default parameter behavior to Inlined or to Tunable, create
parameter data objects to preserve tunability for block parameters. For more

information, see “Block Parameter Representation in the Generated Code” (Simulink
Coder).

When you switch from a system target file that is not ERT-based to one that is ERT-
based, Default parameter behavior sets to Inlined by default. However, you can
change the setting of Default parameter behavior later.

When a top model uses referenced models or if a model is referenced by another
model:

+ All referenced models must set Default parameter behavior to Inlined if the
top model has Default parameter behavior set to Inlined.

5-5

5 Optimization Parameters: Signals and Parameters

+ The top model can specify Default parameter behavior as Tunable or
Inlined.

+ If your model contains an Environment Controller block, you can suppress code
generation for the branch connected to the Sim port if you set Default parameter
behavior to Inlined and the branch does not contain external signals.

Dependencies

When you set Default parameter behavior to Inlined, you enable these configuration
parameters:

+ “Parameter structure” on page 5-23

* “Inline invariant signals” on page 5-7
Command-Line Information
Parameter: Defaul tParameterBehavior
Type: character vector

Value: "Inlined” | "Tunable*
Default: "Tunable® for GRT targets | "Inlined” for ERT targets

Recommended Settings

Application Setting
Debugging Tunable during development
Inlined for production code generation
Traceability Inlined
Efficiency Inlined
Safety precaution No impact

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2
. “Inline Numeric Values of Block Parameters” (Simulink Coder)
. “Block Parameter Representation in the Generated Code” (Simulink Coder)

5-6

Inline invariant signals

Inline invariant signals

Description
Transform symbolic names of invariant signals into constant values.

Category: Optimization

Settings
Default: Off

|7On

Simulink Coder software uses the numerical values of model parameters, instead

of their symbolic names, in generated code. An invariant signal is not inline if it is
nonscalar, complex, or the block inport the signal is attached to takes the address of
the signal.

I ofr

Uses symbolic names of model parameters in generated code.

Dependencies

* This parameter requires a Simulink Coder license.

* This parameter is enabled when you set Default parameter behavior to Inlined.

Command-Line Information

Parameter: InlinelnvariantSignals
Value: "on*" | "off"
Default: "off"

Recommended Settings

Application Setting
Debugging Off

5-7

5 Optimization Parameters: Signals and Parameters

Application Setting
Traceability Off
Efficiency On

Safety precaution No impact

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2
. “Inline Invariant Signals” (Simulink Coder)
. “Performance” (Simulink Coder)

5-8

Use memcpy for vector assignment

Use memcpy for vector assignment

Description
Optimize code generated for vector assignment by replacing for loops with memcpy.

Category: Optimization

Settings
Default: On

|7On

Enables use of memcpy for vector assignment based on the associated threshold
parameter Memcpy threshold (bytes). memcpy is used in the generated code if the
number of array elements times the number of bytes per element is greater than or
equal to the specified value for Memcpy threshold (bytes). One byte equals the
width of a character in this context.

I off
Disables use of memcpy for vector assignment.
Dependencies

* This parameter requires a Simulink Coder license.

* When selected, this parameter enables the associated parameter Memcpy threshold
(bytes).

Command-Line Information

Parameter: EnableMemcpy
Value: "on*" | "off*"
Default: "on*®

Recommended Settings

Application Setting
Debugging No impact

5-9

5 Optimization Parameters: Signals and Parameters

Application Setting
Traceability No impact
Efficiency On

Safety precaution No impact

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2

. “Use memcpy Function to Optimize Generated Code for Vector Assignments”
(Simulink Coder)

. “Performance” (Simulink Coder)

5-10

Memcpy threshold (bytes)

Memcpy threshold (bytes)

Description

Specify the minimum array size in bytes for which memcpy and memset function calls
should replace For loops for vector assignments in the generated code.

Category: Optimization

Settings

Default: 64

Dependencies

* This parameter requires a Simulink Coder license.

+ For the memcpy optimization, this parameter is enabled when you select Use
memcpy for vector assignment.

Command-Line Information

Parameter: MemcpyThreshold
Type: integer

Value: any valid quantity of bytes
Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Accept default or determine target-specific optimal
value

Safety precaution No impact

5-11

5 Optimization Parameters: Signals and Parameters

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2

‘Use memcpy Function to Optimize Generated Code for Vector Assignments”
(Simulink Coder)

“Performance” (Simulink Coder)

5-12

Pack Boolean data into bitfields

Pack Boolean data into bitfields

Description
Specify whether Boolean signals are stored as one—bit bitfields or as a Boolean data type.

Category: Optimization

Note: You cannot use this optimization when you generate code for a target that specifies
an explicit structure alignment.

Settings
Default: Off

41 On

Stores Boolean signals into one—bit bitfields in global block I/O structures or DWork
vectors. This will reduce RAM, but might cause more executable code.

Off

Stores Boolean signals as a Boolean data type in global block I/O structures or
DWork vectors.

Dependencies

This parameter:

* Requires a Embedded Coder license.

+ Appears only for ERT-based targets.

Command-Line Information
Parameter: BooleansAsBitfields
Value: "on® | "off"

Default: "off"

5-13

5 Optimization Parameters: Signals and Parameters

5-14

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2

. “Optimize Generated Code By Packing Boolean Data Into Bitfields” (Embedded

Coder)

. “Bitfield declarator type specifier” on page 5-15
. “Performance” (Embedded Coder)

Bitfield declarator type specifier

Bitfield declarator type specifier

Description

Specify the bitfield type when selecting configuration parameter “Pack Boolean data into
bitfields” on page 5-13.

Category: Optimization

Note: The optimization benefit is dependent upon your choice of target.

Settings
Default: uint_T

v uint_T
The type specified for a bitfield declaration is an unsigned int.

r uchar T
The type specified for a bitfield declaration is an unsigned char.

Tip
The “Pack Boolean data into bitfields” on page 5-13 configuration parameter default
setting uses unsigned integers. This might cause an increase in RAM if the bitfields are

small and distributed. In this case, uchar_T might use less RAM depending on your
target.

Dependency

Pack Boolean data into bitfields enables this parameter.

Command-Line Information
Parameter: BitfieldContainerType
Value: uint_T | uchar_T

5-15

5 Optimization Parameters: Signals and Parameters

5-16

Default: uint_ T

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target dependent
Safety precaution No impact

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2
. “Performance” (Embedded Coder)

Loop unrolling threshold

Loop unrolling threshold

Description
Specify the minimum signal or parameter width for which a for loop is generated.

Category: Optimization

Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of
separate assignment statements to assign values to the elements of a signal or parameter
array.

When there are perfectly nested loops, the code generator uses a for loop if the product

of the loop counts for all loops in the perfect loop nest is greater than or equal to the
threshold.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: RollThreshold
Type: character vector

Value: any valid value
Default: 5"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency >0

5-17

5 Optimization Parameters: Signals and Parameters

5-18

Application Setting

Safety precaution No impact

Related Examples
. “Optimization Pane: Signals and Parameters” on page 5-2
. “Configure Loop Unrolling Threshold” (Simulink Coder)

. “Performance” (Simulink Coder)

Maximum stack size (bytes)

Maximum stack size (bytes)

Description

Specify the maximum stack size in bytes for your model.

Category: Optimization

Settings

Default:Inherit from target

Inherit from target

The Simulink Coder software assigns the maximum stack size to the smaller value of
the following:

* The default value (200,000 bytes) set by the Simulink Coder software
* Value of the TLC variable MaxStackSize in the system target file

<Specify a value>

Specify a positive integer value. Simulink Coder software assigns the maximum
stack size to the specified value.

Note: If you specify a maximum stack size for a model, the estimated required stack
size of a referenced model must be less than the specified maximum stack size of the
parent model.

Tips

If you specify the maximum stack size to be zero, then the generated code implements
all variables as global data.

If you specify the maximum stack to be inf, then the generated code contains the
least number of global variables.

If your model contains a variable that is larger than 4096 bytes, the code generator
implements it in global memory by default. You can increase the size of variables
that the code generator places in local memory by changing the value of the TLC

5-19

5 Optimization Parameters: Signals and Parameters

variable MaxStackVariableSize. You can change this value by typing the following
command in MATLAB Command Window:

set_param(modelName, "TLCOptions*®, "-aMaxStackVariableSize= N*)

Command-Line Information
Parameter: MaxStackSize
Type: int

Value: Any valid value

Default: Inherit from target

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2
. “Customize Stack Space Allocation” (Simulink Coder)

. “Performance” (Simulink Coder)

5-20

Pass reusable subsystem outputs as

Pass reusable subsystem outputs as

Description
Specify how a reusable subsystem passes outputs.

Category: Optimization

Settings
Default: Individual arguments

Individual arguments

Passes each reusable subsystem output argument as an address of a local, instead
of as a pointer to an area of global memory containing all output arguments. This
option reduces global memory usage and eliminates copying local variables back to
global block I/0 structures. When the signals are allocated as local variables, there
may be an increase in stack size. If the stack size increases beyond a level that you
want, use the default setting. The maximum number of output arguments passed
individually i1s 12.

Structure reference

Passes reusable subsystem outputs as a pointer to a structure stored in global
memory.

Note: The default option is used for reusable subsystems that have signals with variable
dimensions.

Dependencies

This parameter:

* Requires a Embedded Coder license.

+ Appears only for ERT-based targets.

Command-Line Information
Parameter: PassReuseQutputArgsAs

5-21

5 Optimization Parameters: Signals and Parameters

5-22

Value: "Structure reference® | "Individual arguments®
Default: " Individual arguments®

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Individual arguments (execution,
RAM),Structure reference (ROM)

Safety precaution No impact

Related Examples
. “Optimization Pane: Signals and Parameters” on page 5-2
. “Generate Reusable Code for Subsystems Shared Across Models” (Simulink Coder)

. “Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual
Arguments” (Embedded Coder)

. “Performance” (Embedded Coder)

Parameter structure

Parameter structure

Description
Control how parameter data is generated for reusable subsystems.

Category: Optimization

Settings
Default: Hierarchical

Hierarchical
Generates a separate header file, defining an independent parameter structure, for
each subsystem that meets the following conditions:
* The subsystem Code generation function packaging parameter is set to
Reusable function
* The subsystem does not violate any code reuse limitations (Simulink Coder).

* The subsystem does not access parameters other than its own (such as
parameters of the root-level model).

Each subsystem parameter structure is referenced as a substructure of the root-level

parameter data structure, creating a structure hierarchy.
NonHierarchical

Generates a single, flat parameter data structure. Subsystem parameters are defined
as fields within the structure. A nonhierarchical data structure can reduce compiler
padding between word boundaries, producing more efficient compiled code.

Dependencies

+ This parameter appears only for ERT-based targets.
* This parameter requires a Embedded Coder license when generating code.

* This parameter is enabled when you set Default parameter behavior to Inlined.

Command-Line Information
Parameter: Inl inedParameterPlacement

5-23

5 Optimization Parameters: Signals and Parameters

Value: "Hierarchical® | "NonHierarchical*®
Default: "Hierarchical "

Recommended Settings

Application Setting

Debugging No impact
Traceability Hierarchical
Efficiency NonHierarchical
Safety precaution No impact

Related Examples

“Optimization Pane: Signals and Parameters” on page 5-2

“Flat Structures for Reusable Subsystem Parameters” (Embedded Coder)
. “Performance” (Embedded Coder)

5-24

Model Parameter Configuration Dialog Box

Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box allows you to declare specific
tunable parameters when you set Default parameter behavior to Inlined. The
parameters that you select appear in the generated code as tunable parameters. For
more information about Default parameter behavior, see “Default parameter
behavior” on page 5-5.

To declare tunable parameters, use Simul ink.Parameter objects instead of the Model
Parameter Configuration dialog box. See “Block Parameter Representation in the
Generated Code” (Simulink Coder).

@k Model Pararmeter Configuration: wdp E@

Description

Define the global (tunable) parameters for your model. These parameters will affect the generated code by enabling accessto parameters
by other modules.

Source list Global {unahle) parameters

MATLAE workspace hat Marme Storage class Storage tvpe qualifier

Marmne

l balance

2 gain

Refresh list Add to tahle == I ey

Ready (0] 4 H Cancel][Help][Apply

Note Simulink Coder software ignores the settings of this dialog box if a model contains
references to other models. However, you can still generate code that uses tunable
parameters with model references, using Simulink.Parameter objects. See “Create
Tunable Calibration Parameter in the Generated Code” (Simulink Coder).

The dialog box has the following controls.

5-25

5 Optimization Parameters: Signals and Parameters

5-26

Source list

Displays a list of workspace variables. The options are:

+ MATLAB workspace — Lists all variables in the MATLAB workspace that have
numeric values.

+ Referenced workspace variables — Lists only those variables referenced by the model.

Refresh list

Updates the source list. Click this button if you have added a variable to the workspace
since the last time the list was displayed.

Add to table

Adds the variables selected in the source list to the adjacent table of tunable parameters.

New

Defines a new parameter and adds it to the list of tunable parameters. Use this button to
create tunable parameters that are not yet defined in the MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB workspace.
You must create the variable yourself.

Storage class

Used for code generation. For more information, see “Storage class” on page 19-9.

Storage type qualifier

Used for code generation. For more information, see “T'ype qualifier” on page 19-9.

Related Examples

. “Optimization Pane: Signals and Parameters” on page 5-2

Model Parameter Configuration Dialog Box

“Block Parameter Representation in the Generated Code” (Simulink Coder)

5-27

Optimization Parameters: Stateflow

6 Optimization Parameters: Stateflow

Optimization Pane: Stateflow

When Simulink Coder is installed on your system, the Optimization > Stateflow pane
includes the following parameters:

Code generation
Use bitsets for storing state configuration

Use bitsets for storing Boolean data

Base storage type for automatically created enumerations: |Nati\.re Integer -

+ “Use bitsets for storing state configuration” on page 6-4
+ “Use bitsets for storing Boolean data” on page 6-6

+ “Base storage type for automatically created enumerations” on page 6-8

Related Examples
. “Optimization Pane: General” on page 4-2

. “Optimize Generated Code” (Stateflow)

Optimization Pane: Stateflow Tab Overview

Optimization Pane: Stateflow Tab Overview

Set up optimizations for a model's active configuration set.
Tips

* To open the Optimization: Stateflow pane, in the Simulink Editor, select Simulation
> Model Configuration Parameters > Optimization > Stateflow.

* Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

COET p ENTTETV

- ST

Related Examples
. “Optimize Generated Code” (Stateflow)

. “Optimization Pane: Stateflow” on page 6-2

6-3

6 Optimization Parameters: Stateflow

Use bitsets for storing state configuration

Description

Use bitsets to reduce the amount of memory required to store state configuration
variables.

Category: Optimization

Settings
Default: Off

|7On

Stores state configuration variables in bitsets. Potentially reduces the amount of
memory required to store the variables. Potentially requires more instructions to
access state configuration, which can result in less optimal code.

I off

Stores state configuration variables in unsigned bytes. Potentially increases the
amount of memory required to store the variables. Potentially requires fewer
instructions to access state configuration, which can result in more optimal code.

Tips

* Selecting this check box can significantly reduce the amount of memory required to
store the variables. However, it can increase the amount of memory required to store
target code if the target processor does not include instructions for manipulating
bitsets.

+ Select this check box for Stateflow charts that have a large number of sibling states at
a given level of the hierarchy.

* Clear this check box for Stateflow charts with a small number of sibling states at a
given level of the hierarchy.

Dependency

This parameter requires a Simulink Coder license.

Use bitsets for storing state configuration

Command-Line Information
Parameter: StateBitsets
Value: "on® | "off"

Default: "off"

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting
Off
Off

Off (execution, ROM), On (RAM)

No impact

“Optimize Generated Code” (Stateflow)

“Optimization Pane: Stateflow” on page 6-2

6-5

6 Optimization Parameters: Stateflow

Use bitsets for storing Boolean data

Description
Use bitsets to reduce the amount of memory required to store Boolean data.

Category: Optimization

Settings
Default: Off

|7On

Stores Boolean data in bitsets. Potentially reduces the amount of memory required to
store the data. Potentially requires more instructions to access the data, which can
result in less optimal code.

™ off

Stores Boolean data in unsigned bytes. Potentially increases the amount of memory
required to store the data. Potentially requires fewer instructions to access the data,
which can result in more optimal code.

Tips

+ Select this check box for Stateflow charts that reference Boolean data infrequently.
* Clear this check box for Stateflow charts that reference Boolean data frequently.
Dependency

This parameter requires a Simulink Coder license.
Command-Line Information
Parameter: DataBitsets

Value: "on® | "off"
Default: "off"

6-6

Use bitsets for storing Boolean data

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact

Related Examples
. “Optimize Generated Code” (Stateflow)

. “Optimization Pane: Stateflow” on page 6-2

6-7

6 Optimization Parameters: Stateflow

Base storage type for automatically created enumerations

Description
Set the storage type and size for enumerations created with active state output.

Category: Optimization

Settings
Default: "Native Integer”

"Native Integer”

Default target integer type
int32

32 bit signed integer type
intl6

16 bit signed integer type
int8

8 bit signed integer type
uintl6

16 bit unsigned integer type
uints

8 bit unsigned integer type

Tips

* The default "Native Integer"® is recommended for most models.

+ If you need a smaller memory footprint for the generated enumerations, set the
storage type to a smaller size. The size must be large enough to hold the number of
states in the chart.

Dependency

This parameter requires a Simulink Coder license.

6-8

Base storage type for automatically created enumerations

Command-Line Information

Parameter: ActiveStateOutputEnumStorageType

Value: "Native Integer” | "int32" | "intl6" | "int8" | "uintl6” | "uint8*
Default: "Native Integer”

Related Examples
. “Optimize Generated Code” (Stateflow)

“Optimization Pane: Stateflow” on page 6-2

6-9

Diagnostics Parameters: Compatibility

7 Diagnostics Parameters: Compatibility

Model Configuration Parameters: Compatibility Diagnostics

The Diagnostics > Compatibility category includes parameters for detecting issues
when you use a model that you created in an earlier release.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics > Compatibility pane, or on the All
Parameters tab in the Diagnostics > Compatibility category.

Parameter Description
“S-function upgrades needed” on page Select the diagnostic action to take if
7-4 Simulink software encounters a block that

has not been upgraded to use features of
the current release.

“Block behavior depends on frame status of |Select the diagnostic action to take when
signal” on page 7-6 Simulink software encounters a block
whose behavior depends on the frame
status of a signal.

“SimState object from earlier release” on Use this check to report that the SimState
page 7-8 was generated by an earlier version of
Simulink.

Related Examples

. Diagnosing Simulation Errors

. Solver Diagnostics on page 12-2

. Sample Time Diagnostics on page 11-2

. Data Validity Diagnostics on page 9-2

. Type Conversion Diagnostics on page 14-2
. Connectivity Diagnostics on page 8-2

. Compatibility Diagnostics on page 7-2

. “Model Configuration Parameters: Model Referencing Diagnostics” on page
10-2

7-2

Compaitibility Diagnostics Overview

Compaitibility Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an
incompatibility between the current version of Simulink software and the model.

Configuration

Set the parameters displayed.

Tips

+ To open the Compatibility pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Compatibility.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

e R

Related Examples

. “Model Configuration Parameters: Compatibility Diagnostics” on page 7-2

7-3

7 Diagnostics Parameters: Compatibility

S-function upgrades needed

Description

Select the diagnostic action to take if Simulink software encounters a block that has not
been upgraded to use features of the current release.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter:SFcnCompatibilityMsg
Value: "none® | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors

7-4

S-function upgrades needed

“Model Configuration Parameters: Compatibility Diagnostics” on page 7-2

7-5

7 Diagnostics Parameters: Compatibility

Block behavior depends on frame status of signal

7-6

Description

Select the diagnostic action to take when Simulink software encounters a block whose
behavior depends on the frame status of a signal.

In future releases, frame status will no longer be a signal attribute. To prepare for this
change, many blocks received a new parameter. This parameter allows you to specify
whether the block treats its input as frames of data or as samples of data. Setting this
parameter prepares your model for future releases by moving control of sample- and
frame-based processing from the frame status of the signal to the block.

This diagnostic helps you identify whether any of the blocks in your model relies on the
frame status of a signal. By knowing this status, you can determine whether the block
performs sample- or frame-based processing. For more information, see the R2012a DSP
System Toolbox™ Release Notes section about frame-based processing.

Note: Frame-based processing requires a DSP System Toolbox license.

Category: Diagnostics

Settings
Default: error

none
Simulink software takes no action.
warning

If your model contains any blocks whose behavior depends on the frame status of a
signal, Simulink software displays a warning.

error

If your model contains any blocks whose behavior depends on the frame status of a
signal, Simulink software terminates the simulation and displays an error message.

Block behavior depends on frame status of signal

Tips

* Use the Upgrade Advisor to automatically update the blocks in your model. See
“Model Upgrades”.

Command-Line Information

Parameter: FrameProcessingCompatibilityMsg
Value: "none” | "warning® | "error*

Default: "warning”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Sample- and Frame-Based Concepts” (DSP System Toolbox)

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Compatibility Diagnostics” on page 7-2

7-7

7 Diagnostics Parameters: Compatibility

SimState object from earlier release

7-8

Description

Use this check to report that the SimState was generated by an earlier version of
Simulink.

Category: Diagnostics

Settings
Default: error

warning
Simulink will restore as much of this SimState as possible.
error

When Simulink detects that the SimState was generated by an earlier version of
Simulink, it does not attempt to load the object.

Command-Line Information
Parameter: SimStateOlderReleaseMsg
Value: "warning” | "error*

Default: "error*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Save and Restore Simulation State as SimState”

SimState object from earlier release

“Model Configuration Parameters: Compatibility Diagnostics” on page 7-2

7-9

Diagnostics Parameters: Connectivity

8 Diagnostics Parameters: Connectivity

Model Configuration Parameters: Connectivity Diagnostics

8-2

The Diagnostics > Connectivity category includes parameters for detecting issues
related to signal line connectivity, for example, unconnected ports and lines.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics > Connectivity pane, or on the All
Parameters tab in the Diagnostics > Connectivity category.

Parameter

Description

“Signal label mismatch” on page 8-5

Select the diagnostic action to take when
different names are used for the same
signal as that signal propagates through
blocks in a model. This diagnostic does
not check for signal label mismatches on a
virtual bus signal.

“Unconnected block input ports” on page
8-7

Select the diagnostic action to take
when the model contains a block with an
unconnected input.

“Unconnected block output ports” on page
8-9

Select the diagnostic action to take
when the model contains a block with an
unconnected output.

“Unconnected line” on page 8-11

Select the diagnostic action to take when
the Model contains an unconnected line or
an unmatched Goto or From block.

“Unspecified bus object at root Outport
block” on page 8-13

Select the diagnostic action to take while
generating a simulation target for a
referenced model if any of the model's
root Outport blocks is connected to a bus
but does not specify a bus object (see
Simulink.Bus).

“Element name mismatch” on page 8-15

Select the diagnostic action to take if the
name of a bus element does not match the
name specified by the corresponding bus
object.

Model Configuration Parameters: Connectivity Diagnostics

Parameter

Description

“Bus signal treated as vector” on page
8-17

Select the diagnostic action to take when
Simulink software detects a virtual bus
signal that is used as a mux signal.

“Non-bus signals treated as bus signals” on
page 8-20

Detect when Simulink implicitly converts
a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment
or Bus Selector block.

“Repair bus selections” on page 8-22

Repair broken selections in the Bus
Selector and Bus Assignment block
parameter dialogs due to upstream bus
hierarchy changes.

“Invalid function-call connection” on page
8-24

Select the diagnostic action to take if
Simulink software detects incorrect use of a
function-call subsystem.

“Context-dependent inputs” on page
8-26

Select the diagnostic action to take when
Simulink software has to compute any of
a function-call subsystem's inputs directly
or indirectly during execution of a call to a
function-call subsystem.

Related Examples

. Diagnosing Simulation Errors

. Solver Diagnostics on page 12-2

. Sample Time Diagnostics on page 11-2

. Data Validity Diagnostics on page 9-2

. Type Conversion Diagnostics on page 14-2

. Compatibility Diagnostics on page 7-2

. Model Referencing Diagnostics on page 10-2

8-3

8 Diagnostics Parameters: Connectivity

Connectivity Diagnostics Overview

8-4

Configuration

Set the parameters displayed.

Tips

* To open the Connectivity pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Connectivity.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

T SR R

Related Examples

. “Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

Signol label mismatch

Signal label mismatch

Description

Select the diagnostic action to take when different names are used for the same signal
as that signal propagates through blocks in a model. This diagnostic does not check for
signal label mismatches on a virtual bus signal.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: SignallLabelMismatchMsg
Value: "none” | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

8-5

8 Diagnostics Parameters: Connectivity

Related Examples

. “Signal Names and Labels”

Diagnosing Simulation Errors

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-6

Unconnected block input ports

Unconnected block input ports

Description

Select the diagnostic action to take when the model contains a block with an unconnected

input.

Category: Diagnostics
Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedlnputMsg
Value: "none® | "warning® | "error*

Default: "warning”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

. Diagnosing Simulation Errors

Setting

No impact
No impact
No impact

error

8-7

8 Diagnostics Parameters: Connectivity

. “Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-8

Unconnected block output ports

Unconnected block output ports

Description

Select the diagnostic action to take when the model contains a block with an unconnected

output.

Category: Diagnostics
Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedOutputMsg
Value: "none® | "warning® | "error*

Default: "warning”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

. Diagnosing Simulation Errors

Setting

No impact
No impact
No impact

error

8-9

8 Diagnostics Parameters: Connectivity

. “Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-10

Unconnected line

Unconnected line

Description

Select the diagnostic action to take when the Model contains an unconnected line or an
unmatched Goto or From block.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedLineMsg
Value: "none® | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors

8-11

8 Diagnostics Parameters: Connectivity

. Goto
. From
. “Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-12

Unspecified bus obiject at root Outport block

Unspecified bus object at root Outport block

Description

Select the diagnostic action to take while generating a simulation target for a referenced
model if any of the model's root Outport blocks is connected to a bus but does not specify
a bus object (see Simulink.Bus).

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: RootOutportRequireBusObject
Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

8-13

8 Diagnostics Parameters: Connectivity

See Also

Functions
Simulink.Bus

Related Examples

Diagnosing Simulation Errors
. Outport

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-14

Element name mismatch

Element name mismatch

Description

Select the diagnostic action to take if the name of a bus element does not match the name
specified by the corresponding bus object.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* You can use this diagnostic along with bus objects to ensure that your model meets
bus element naming requirements imposed by some blocks, such as the Switch block.

* In a Bus Creator block, you can enforce strong data typing. See the tips section for the
Bus Creator “Override bus signal names from inputs” parameter.

Command-Line Information
Parameter: BusObjectLabelMismatch
Value: "none® | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

8-15

8 Diagnostics Parameters: Connectivity

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-16

Bus signal treated as vector

Bus signal treated as vector

Description

Select the diagnostic action to take when Simulink software detects a virtual bus signal
that is used as a mux signal.

Category: Diagnostics

Settings
Default: none

none
Disables checking for virtual buses used as muxes.

warning
Simulink software displays a warning if it detects a virtual bus used as a mux. This
option does not enforce strict bus behavior.

error

Simulink software terminates the simulation and displays an error message when it
builds a model that uses any virtual bus as a mux.

Tips

+ This diagnostic detects the use of virtual bus signals used to specify muxes. The
diagnostic considers a virtual bus signal to be used as a mux if it is input to a Demux
block or to any block that can input a mux or a vector but is not formally defined as
bus-capable. See “Bus-Capable Blocks” for details.

* Virtual buses can be used as muxes only when they contain no nested buses and all
constituent signals have the same attributes. This practice is deprecated as of R2007a
(V6.6) and may cease to be supported at some future time. MathWorks, therefore,
discourages mixing virtual buses with muxes in new applications, and encourages
upgrading existing applications to avoid such mixtures.

+ If you are using simplified initialization mode, you must set this diagnostic to error.
For more information, see “Underspecified initialization detection” on page 2-81.

* You can identify bus signals that are treated as a vectors using the Model Advisor
“Check bus signals treated as vectors” check.

8-17

8 Diagnostics Parameters: Connectivity

Command-Line Information
Parameter: StrictBusMsg
Value: "none” | *©
"ErrorOnBusTreatedAsVector”
Default: "warning”

warning® | "ErrorLevell” | "WarnOnBusTreatedAsVector" |

Here is how the StrictBusMsg parameter values map to the values of the Bus signal
treated as vector parameter in the Configuration Parameters > Diagnostics >

Connectivity dialog box.

Value of StrictBusMsg Value of “Bus signal treated as vector” diagnostic
None none
Warning none
ErrorLevell none
WarnOnBusTreatedAsVector warning
ErrorOnBusTreatedAsVector error
Recommended Settings
Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

Functions

Simulink.BlockDiagram.addBusToVector

Related Examples
. Diagnosing Simulation Errors
. “Bus-Capable Blocks”

. Demux

8-18

Bus signal treated as vector

Bus to Vector
“Underspecified initialization detection” on page 2-81
“Check virtual bus inputs to blocks”

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-19

8 Diagnostics Parameters: Connectivity

Non-bus signals treated as bus signals

8-20

Description

Detect when Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block.

Category: Diagnostics

Settings
Default: none

none
Implicitly converts non-bus signals to bus signals to support connecting the signal to
a Bus Assignment or Bus Selector block.

warning
Simulink displays a warning, indicating that it has converted a non-bus signal to a
bus signal. The warning lists the non-bus signals that Simulink converts.

error
Simulink terminates the simulation without performing converting non-bus signals

to bus signals. The error message lists the non-bus signal that is being treated as a
bus signal.

Command-Line Information

Parameter: NonBusSignalsTreatedAsBus
Value: "none® | "warning® | "error*
Default: "none*”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Non-bus signals treated as bus signals

Application Setting
Safety precaution error
See Also

Functions

Simulink.BlockDiagram.addBusToVector

Related Examples

. Diagnosing Simulation Errors
. “Bus-Capable Blocks”

. Demux

. Bus to Vector

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-21

8 Diagnostics Parameters: Connectivity

Repair bus selections

8-22

Description

Repair broken selections in the Bus Selector and Bus Assignment block parameter
dialogs due to upstream bus hierarchy changes.

Category: Diagnostics

Settings
Default: Warn and repair

Warn and repair

Simulink displays a warning, indicating the block parameters for Bus Selector and
Bus Assignment blocks that Simulink repaired to reflect upstream bus hierarchy
changes.

Error without repair
Simulink terminates the simulation and displays an error message indicating the

block parameters that you need to repair for Bus Selector and Bus Assignment blocks
to reflect upstream bus hierarchy changes.

Command-Line Information

Parameter: BusNameAdapt

Values: "WarnAndRepair® | "ErrorWithoutRepair”
Default: "WarnAndRepair®

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution Warn and repair

Repair bus selections

Related Examples

. “Nested Buses”

. Diagnosing Simulation Errors

. “Bus-Capable Blocks”

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-23

8 Diagnostics Parameters: Connectivity

Invalid function-call connection

8-24

Description

Select the diagnostic action to take if Simulink detects incorrect use of a function-call
subsystem.

Category: Diagnostics

Settings
Default: error

warning

Simulink displays a warning.

Note: This option will be depreciated in future releases.

error

Simulink terminates the simulation and displays an error message.

Tips

* See the "Function-call subsystems" examples in the Simulink Subsystem Semantics
library for examples of invalid uses of function-call subsystems.

+ Setting this parameter to warning can lead to invalid simulation results.

+ Setting this parameter to warning may cause Simulink to insert extra delay
operations.

Command-Line Information
Parameter: InvalidFcnCallConnMsg
Value: "warning”® | "error”

Default: "error*

Invalid function-call connection

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors

. Subsystem Semantics

“Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-25

8 Diagnostics Parameters: Connectivity

Context-dependent inputs

8-26

Description

Select the diagnostic action to take when Simulink has to compute any function-call
subsystem inputs directly or indirectly during execution of a call to a function-call
subsystem.

Category: Diagnostics

Settings
Default: error

error
Issue an error for context-dependent inputs.
warning

Issue a warning for context-dependent inputs.

Tips
+ This situation occurs when executing a function-call subsystem that can change its
inputs.

+ For examples of function-call subsystems, see the "Function-call systems" examples in
the Simulink "Subsystem Semantics" library).

+ To fix an error or warning generated by this diagnostic, use one of these approaches:

+ For the Inport block inside of the function-call subsystem, enable the Latch input
for feedback signals of function-call subsystem outputs parameter.

Place a Function-Call Feedback Latch block on the feedback signal.

For examples of using these approaches, open the sl_subsys_fencallerr12 model and
press the more info button.

Command-Line Information
Parameter: FcnCalllnplnsideContextMsg
Value: "Error®| "Warning*

Context-dependent inputs

Default: "Error"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Error

Related Examples

. “Function-Call Subsystems”
. “Pass fixed-size scalar root inputs by value for code generation” on page 15-24
. Subsystem Semantics

. Subsystem
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Connectivity Diagnostics” on page 8-2

8-27

Diagnostics Parameters: Data Validity

9 Diagnostics Parameters: Data Validity

Model Configuration Parameters: Data Validity Diagnostics

9-2

The Diagnostics > Data Validity category includes parameters for detecting issues
related to data (signals, parameters, and states). These issues include:

* Loss of information due to data type quantization and overflow.

+ Loss of parameter tunability in the generated code.

* Loss of information due to Data Store Write and Data Store Read block ordering.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics > Data Validity pane, or on the All
Parameters tab in the Diagnostics > Data Validity category.

Parameter

Description

“Signal resolution” on page 9-6

Select how Simulink software resolves
signals and states to Simul ink.Signal
objects.

“Division by singular matrix” on page
9-9

Select the diagnostic action to take if the
Product block detects a singular matrix
while inverting one of its inputs in matrix
multiplication mode.

“Underspecified data types” on page
9-11

Select the diagnostic action to take if
Simulink software could not infer the
data type of a signal during data type
propagation.

“Simulation range checking” on page
9-14

Select the diagnostic action to take when
signals exceed specified minimum or
maximum values.

“Wrap on overflow” on page 9-16

Select the diagnostic action to take if the
value of a signal overflows the signal data
type and wraps around.

“Saturate on overflow” on page 9-18

Select the diagnostic action to take if
the value of a signal is too large to be
represented by the signal data type,
resulting in a saturation.

Model Configuration Parameters: Data Validity Diagnostics

Parameter

Description

“Inf or NaN block output” on page 9-20

Select the diagnostic action to take if the
value of a block output is Inf or NaN at the
current time step.

“n

rt" prefix for identifiers” on page 9-22

Select the diagnostic action to take during
code generation if a Simulink object name
(the name of a parameter, block, or signal)
begins with rt.

“Detect downcast” on page 9-24

Select the diagnostic action to take when
a parameter downcast occurs during
simulation.

“Detect overflow” on page 9-26

Select the diagnostic action to take if
a parameter overflow occurs during
simulation.

“Detect underflow” on page 9-28

Select the diagnostic action to take when
a parameter underflow occurs during
simulation.

“Detect precision loss” on page 9-30

Select the diagnostic action to take when
parameter precision loss occurs during
simulation.

“Detect loss of tunability” on page 9-32

Select the diagnostic action to take when
an expression with tunable variables is
reduced to its numerical equivalent in the
generated code.

“Detect read before write” on page 9-34

Select the diagnostic action to take if the
model attempts to read data from a data
store to which it has not written data in

this time step.

“Detect write after read” on page 9-36

Select the diagnostic action to take if the
model attempts to write data to a data
store after previously reading data from it
in the current time step.

“Detect write after write” on page 9-38

Select the diagnostic action to take if the
model attempts to write data to a data
store twice in succession in the current
time step.

9 Diagnostics Parameters: Data Validity

9-4

Parameter

Description

“Multitask data store” on page 9-40

Select the diagnostic action to take when
one task reads data from a Data Store
Memory block to which another task writes
data.

“Duplicate data store names” on page
9-42

Select the diagnostic action to take when
the model contains multiple data stores
that have the same name. The data stores
can be defined with Data Store Memory
blocks or Simul ink.Signal objects.

Related Examples

. Diagnosing Simulation Errors

. “Data Types Supported by Simulink”

. Solver Diagnostics on page 12-2

Sample Time Diagnostics on page 11-2
Type Conversion Diagnostics on page 14-2
Connectivity Diagnostics on page 8-2
Compatibility Diagnostics on page 7-2
Model Referencing Diagnostics on page 10-2

Data Validity Diagnostics Overview

Data Validity Diagnostics Overview

Specify what diagnostic action Simulink software should take, if any, when it detects a
condition that could compromise the integrity of data defined by the model, as well as the
Data Validity parameters that pertain to code generation, and are used to debug a model.

Configuration

Set the parameters displayed.

Tips

+ To open the Data Validity pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Data Validity.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

e R

Related Examples
. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-5

9 Diagnostics Parameters: Data Validity

Signal resolution

9-6

Description

Select how a model resolves signals and states to Simul ink.Signal objects. See
“Explicit and Implicit Symbol Resolution” for more information.

Category: Diagnostics

Settings
Default: Explicit only

None

Do not perform signal resolution. None of the signals, states, Stateflow data, and
MATLAB Function block data in the model can resolve to Simulink.Signal objects.

This setting does not affect data stores that you define by creating
Simulink.Signal objects (instead of using Data Store Memory blocks).

Explicit only
Do not perform implicit signal resolution. Only explicitly specified signal resolution
occurs. This is the recommended setting.

Explicit and implicit
Perform implicit signal resolution wherever possible, without posting any warnings
about the implicit resolutions.

Explicit and warn implicit

Perform implicit signal resolution wherever possible, posting a warning of each
implicit resolution that occurs.

Tips

* To reduce the dependency of the model on variables and objects in workspaces and
data dictionaries, which can improve model portability, readability, and ease of
maintenance, use None.

When you use this setting, migrate design attributes from existing
Simulink.Signal objects into the model by using block parameters and signal

Signal resolution

properties (for example, in the Model Data Editor or in Signal Properties dialog
boxes).

+ Use the Signal Properties dialog box (see Signal Properties Dialog Box on page
19-2) to specify explicit resolution for signals.

+ Use the State Attributes pane on dialog boxes of blocks that have discrete states,
e.g., the Discrete-Time Integrator block, to specify explicit resolution for discrete
states.

* Multiple signals can resolve to the same signal object and have the properties that the
object specifies. However, the signal object cannot use a storage class other than Auto
or Reusable.

+ MathWorks discourages using implicit signal resolution except for fast prototyping,
because implicit resolution slows performance, complicates model validation, and can
have nondeterministic effects.

* Simulink software provides the disableimplicitsignalresolution function,
which you can use to change settings throughout a model so that it does not use
implicit signal resolution.

Command-Line Information

Parameter: SighalResolutionControl

Value: "None*® | "UseLocalSettings® | "TryResolveAll" |
"TryResolveAllWithWarning*®

Default: "UselLocalSettings*”

SignalResolutionControl Value Equivalent Signal Resolution Value
"None* None

"UselLocalSettings" Explicit only
"TryResolveAll* Explicit and implicit
"TryResolveAllWithWarning*® Explicit and warn implicit

Recommended Settings

Application Setting
Debugging Explicit only or None
Traceability Explicit only or None

9-7

9 Diagnostics Parameters: Data Validity

9-8

Application Setting

Efficiency Explicit only or None
Safety precaution Explicit only or None
See Also

Simulink.Signal

Related Examples

Diagnosing Simulation Errors
Signal Properties Dialog Box on page 19-2
Discrete-Time Integrator

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

Division by singular matrix

Division by singular matrix

Description

Select the diagnostic action to take if the Product block detects a singular matrix while
inverting one of its inputs in matrix multiplication mode.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
For models referenced in Accelerator mode, Simulink ignores the Division by singular

matrix parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: CheckMatrixSingularityMsg
Value: "none” | "warning® | "error*

9-9

9 Diagnostics Parameters: Data Validity

Default: "none*"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors
. Product

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-10

Underspecified data types

Underspecified data types

Description

Select the diagnostic action to take if Simulink software could not infer the data type of a
signal during data type propagation.

Category: Diagnostics

Identify and Resolve Underspecified Data Types

This example shows how to use the configuration parameter Underspecified data
types to identify and resolve an underspecified data type.

1
2

Open the example model ex_underspecified_data_ types.

On the Configuration Parameters > Diagnostics > Data Validity pane, set
Underspecified data types to warning.

Update the diagram.

The signals in the model use the data type uint8, and the model generates a
warning.

Open the Diagnostic Viewer. The warning indicates that the output signal of the
Constant block has an underspecified data type.

Open the Constant block dialog box.

On the Signal Attributes tab, Output data type is set to Inherit: Inherit
via back propagation. The Constant block output inherits a data type from the
destination block. In this case, the destination is the Sum block.

Open the Sum block dialog box.

On the Signal Attributes tab, Accumulator data type is set to Inherit:
Inherit via internal rule. Sum blocks cast all of their input signals to the
selected accumulator data type. In this case, the accumulator data type is specified
as an inherited type.

Open the Inport block dialog box. On the Signal Attributes tab, Data type is set to
uints.

The data type of the Constant block output signal is underspecified because the source
and destination blocks each apply an inherited data type. The signal cannot identify

9-11

9 Diagnostics Parameters: Data Validity

9-12

a data type to inherit. However, the model uses heuristic rules to determine the most
appropriate type to use, uints.

To resolve the underspecified data type, you can use one of these techniques:

* On the Signal Attributes tab of the Constant block dialog box, specify Output data
type as a particular numeric type, such as uint8.

* On the Signal Attributes tab of the Sum block dialog box, select the check box

Require all inputs to have the same data type.

With this setting, the Sum block applies the data type of the first input, uint8, to the
underspecified data type of the second input.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnderSpecifiedDataTypeMsg

Value: "none” | "warning” | "error”
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Underspecified data types

Related Examples

“Default for underspecified data type” on page 4-11

Diagnosing Simulation Errors

“Use single Data Type as Default for Underspecified Types” (Embedded Coder)
“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-13

9 Diagnostics Parameters: Data Validity

Simulation range checking

9-14

Description

Select the diagnostic action to take when signals exceed specified minimum or maximum
values.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* For information about specifying minimum and maximum values for signals and
about how Simulink checks nondouble signals, see “Signal Ranges”.

* When Simulation range checking is enabled, Simulink performs signal range
checking at every time step during a simulation. Setting this diagnostic to warning or
error can cause a decrease in simulation performance.

* For referenced models, Simulink performs signal range checking for only root-level I/
O signals. It does not check internal signals.

+ If you have an Embedded Coder license, you can perform signal range checking in

top-model or Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL)
simulations (Embedded Coder).

Command-Line Information
Parameter: SignalRangeChecking

Simulation range checking

Value: "none® | "warning® | "error*

Default: "none*”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples
. “Signal Ranges”

Diagnosing Simulation Errors

Setting

warning or error
warning or error
none

error

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-15

9 Diagnostics Parameters: Data Validity

Wrap on overflow

9-16

Description

Select the diagnostic action to take if the value of a signal overflows the signal data type
and wraps around.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* This diagnostic applies only to overflows which wrap for integer and fixed-point data

types.

+ This diagnostic also reports division by zero for all data types, including floating-point
data types.

* To check for floating-point overflows (for example, Inf or NaN) for doublle or single
data types, select the Inf or NaN block output diagnostic. (See “Inf or NaN block
output” on page 9-20 for more information.)

* For models referenced in accelerator mode, Simulink ignores the Wrap on overflow
parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

Wrap on overflow

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: IntegerOverflowMsg
Value: "none*” | "warning” | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. “Handle Overflows in Simulink Models” (Fixed-Point Designer)

. Diagnosing Simulation Errors
. “Local and Global Data Stores”

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-17

9 Diagnostics Parameters: Data Validity

Saturate on overflow

9-18

Description

Select the diagnostic action to take if the value of a signal is too large to be represented
by the signal data type, resulting in a saturation.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
+ This diagnostic applies only to overflows which saturate for integer and fixed-point
data types.

+ To check for floating-point overflows (for example, Inf or NaN) for doublle or single
data types, select the Inf or NaN block output diagnostic. (See “Inf or NaN block
output” on page 9-20 for more information.)

Command-Line Information
Parameter: IntegerSaturationMsg
Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging warning

Saturate on overflow

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. “Handle Overflows in Simulink Models” (Fixed-Point Designer)

. Diagnosing Simulation Errors

. “Local and Global Data Stores”

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-19

9 Diagnostics Parameters: Data Validity

Inf or NaN block output

9-20

Description

Select the diagnostic action to take if the value of a block output is Inf or NaN at the
current time step.

Note: Accelerator mode does not support any runtime diagnostics.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* This diagnostic applies only to floating-point overflows for double or single data

types.

* To check for integer and fixed-point overflows, select the Wrap on overflow
diagnostic. (See “Wrap on overflow” on page 9-16 for more information.)

* For models referenced in accelerator mode, Simulink ignores the Info or NaN block
output parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

Inf or NaN block output

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: Signal InfNanChecking
Value: "none*” | "warning” | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. “Validate a Floating-Point Embedded Model”
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-21

9 Diagnostics Parameters: Data Validity

"ri" prefix for identifiers

9-22

Description

Select the diagnostic action to take during code generation if a Simulink object name (the
name of a parameter, block, or signal) begins with rt.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* The default setting (error) causes code generation to terminate with an error if it
encounters a Simulink object name (parameter, block, or signal), that begins with rt.

* This is intended to prevent inadvertent clashes with generated identifiers whose
names begins with rt.

Command-Line Information
Parameter: RTPrefix

Value: "none” | "warning® | "error*
Default: "error”

Recommended Settings

Application Setting
Debugging No impact

"rt" prefix for identifiers

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-23

9 Diagnostics Parameters: Data Validity

Detect downcast

9-24

Description

Select the diagnostic action to take when a parameter downcast occurs during
simulation.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* A parameter downcast occurs if the computation of block output required converting
the parameter's specified type to a type having a smaller range of values (for example,
from uiInt32 to UINt8).

* This diagnostic applies only to named tunable parameters.

Command-Line Information
Parameter: ParameterDowncastMsg

Value: "none” | "warning” | "error”
Default: "error*

Recommended Settings

Application Setting
Debugging No impact

Detect downcast

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-25

9 Diagnostics Parameters: Data Validity

Detect overflow

9-26

Description
Select the diagnostic action to take if a parameter overflow occurs during simulation.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* A parameter overflow occurs if Simulink software encounters a parameter whose data
type's range is not large enough to accommodate the parameter's ideal value (the
1deal value is either too large or too small to be represented by the data type). For
example, suppose that the parameter's ideal value is 200 and its data type is int8.
Overflow occurs in this case because the maximum value that int8 can represent is
127.

* Parameter overflow differs from parameter precision loss, which occurs when the
ideal parameter value is within the range of the data type and scaling being used, but
cannot be represented exactly.

* Both parameter overflow and precision loss are quantization errors, and the
distinction between them can be a fine one. The Detect overflow diagnostic reports
all quantization errors greater than one bit. For very small parameter quantization
errors, precision loss will be reported rather than an overflow when

(Max + Slope) 2V, 3,.; > (Min— Slope)

Detect overflow

where

Max is the maximum value representable by the parameter data type
* Min is the minimum value representable by the parameter data type
+ Slope is the slope of the parameter data type (slope = 1 for integers)
Videa 18 the ideal value of the parameter

Command-Line Information
Parameter: ParameterOverflowMsg
Value: "none” | "warning® | "error*
Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-27

9 Diagnostics Parameters: Data Validity

Detect underflow

9-28

Description

Select the diagnostic action to take when a parameter underflow occurs during
simulation.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Parameter underflow occurs when Simulink software encounters a parameter whose
data type does not have enough precision to represent the parameter's ideal value
because the ideal value is too small.

* When parameter underflow occurs, casting the ideal value to the data type causes the
parameter's modeled value to become zero, and therefore to differ from its ideal value.

Command-Line Information
Parameter: ParameterUnderflowMsg
Value: "none” | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact

Detect underflow

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-29

9 Diagnostics Parameters: Data Validity

Detect precision loss

9-30

Description

Select the diagnostic action to take when parameter precision loss occurs during
simulation.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Precision loss occurs when Simulink software encounters a parameter whose data
type does not have enough precision to represent the parameter's value exactly. As a
result, the modeled value differs from the ideal value.

+ Parameter precision loss differs from parameter overflow, which occurs when the
range of the parameter's data type, i.e., that maximum value that it can represent, is
smaller than the ideal value of the parameter.

* Both parameter overflow and precision loss are quantization errors, and the
distinction between them can be a fine one. The Detect Parameter overflow
diagnostic reports all parameter quantization errors greater than one bit. For very
small parameter quantization errors, precision loss will be reported rather than an
overflow when

(Max + Slope) 2V, 3,.; > (Min— Slope)

Detect precision loss

where

Max is the maximum value representable by the parameter data type.
* Min is the minimum value representable by the parameter data type.
+ Slope is the slope of the parameter data type (slope = 1 for integers).

Vi:dear 1s the full-precision, ideal value of the parameter.

Command-Line Information
Parameter: ParameterPrecisionLossMsg
Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-31

9 Diagnostics Parameters: Data Validity

Detect loss of tunability

9-32

Description

Select the diagnostic action to take when an expression with tunable variables is reduced
to its numerical equivalent in the generated code.

Category: Diagnostics

Settings
Default: warning for GRT targets | error for ERT targets

none

Take no action.
warning

Generate a warning.
error

Terminate simulation or code generation and generate an error.

Tips

* The default value for Detect loss of tunability for ERT-based targets is error.
When you switch from a system target file that is not ERT-based to one that is ERT-
based, Detect loss of tunability is set to error. However, you can change the
setting of Detect loss of tunability later.

+ If a tunable workspace variable is modified by Mask Initialization code, or is used in
an arithmetic expression with unsupported operators or functions, the expression is
reduced to its numeric value and therefore cannot be tuned.

Command-Line Information

Parameter: ParameterTunabilitylLossMsg

Type: character vector

Value: "none® | "warning® | "error*

Default: "warning” for GRT targets | "error” for ERT targets

Detect loss of tunability

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
Related Examples

. Diagnosing Simulation Errors

. “Preservation of Expressions” (Simulink Coder)

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-33

9 Diagnostics Parameters: Data Validity

Detect read before write

9-34

Description

Select the diagnostic action to take if the model attempts to read data from a data store
to which it has not written data in this time step.

Category: Diagnostics

Settings
Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in accelerator and rapid accelerator mode, if
the Detect read before write parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
toDisable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

Detect read before write

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: ReadBeforeWriteMsg

Value: "UseLocalSettings” | "DisableAll" | "EnableAllAsWarning” |
"EnableAllAsError-

Default: "UselLocalSettings*®

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors
. “Local and Global Data Stores”
. Data Store Memory

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-35

9 Diagnostics Parameters: Data Validity

Detect write after read

9-36

Description

Select the diagnostic action to take if the model attempts to write data to a data store
after previously reading data from it in the current time step.

Category: Diagnostics

Settings
Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in accelerator and rapid accelerator mode, if
the Detect write after read parameter is set to Enable all as warnings, Enable

all as errors, or Use local settings, Simulink temporarily changes the setting

toDisable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

Detect write after read

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: WriteAfterReadMsg

Value: "UseLocalSettings” | "DisableAll" | "EnableAllAsWarning” |
"EnableAllAsError-

Default: "UselLocalSettings*®

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors
. “Local and Global Data Stores”
. Data Store Memory

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-37

9 Diagnostics Parameters: Data Validity

Detect write after write

9-38

Description

Select the diagnostic action to take if the model attempts to write data to a data store
twice in succession in the current time step.

Category: Diagnostics

Settings
Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in accelerator and rapid accelerator mode, if
the Detect write after write parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
toDisable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

Detect write after write

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: WriteAfterWriteMsg

Value: "UseLocalSettings” | "DisableAll" | "EnableAllAsWarning” |
"EnableAllAsError-

Default: "UselLocalSettings*®

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

Simulink.Signal

Related Examples

. Diagnosing Simulation Errors
. “Local and Global Data Stores”
. Data Store Memory

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-39

9 Diagnostics Parameters: Data Validity

Multitask data store

9-40

Description

Select the diagnostic action to take when one task reads data from a Data Store Memory
block to which another task writes data.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* Such a situation is safe only if one of the tasks cannot interrupt the other, such as
when the data store is a scalar and the writing task uses an atomic copy operation to
update the store or the target does not allow the tasks to preempt each other.

* You should disable this diagnostic (set it to none) only if the application warrants it,
such as if the application uses a cyclic scheduler that prevents tasks from preempting
each other.

Command-Line Information
Parameter: MultiTaskDSMMsg
Value: "none® | "warning® | "error-
Default: "warning”

Multitask data store

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also
Simulink.Signal

Related Examples

. “Local and Global Data Stores”

. Data Store Memory

Diagnosing Simulation Errors

Setting

No impact
No impact
No impact

error

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-41

9 Diagnostics Parameters: Data Validity

Duplicate data store names

9-42

Description

Select the diagnostic action to take when the model contains multiple data stores that
have the same name. The data stores can be defined with Data Store Memory blocks or
Simulink.Signal objects.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tip

This diagnostic is useful for detecting errors that can occur when a lower-level data store
unexpectedly shadows a higher-level data store that has the same name.

Command-Line Information
Parameter: UniqueDataStoreMsg
Value: "none® | "warning® | "error”
Default: "none*

Recommended Settings

Application Setting
Debugging No impact

Duplicate data store names

Application
Traceability
Efficiency

Safety precaution

See Also
Simulink.Signal

Related Examples

. Diagnosing Simulation Errors
. “Local and Global Data Stores”
. Data Store Memory

Setting
No impact
No impact

No impact

“Model Configuration Parameters: Data Validity Diagnostics” on page 9-2

9-43

Diagnostics Parameters: Model
Referencing

10 Diagnostics Parameters: Model Referencing

Model Configuration Parameters: Model Referencing Diagnostics

The Diagnostics > Model Referencing category includes parameters for detecting
issues related to referenced models (Model blocks).

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics > Model Referencing pane, or on the
All Parameters tab in the Diagnostics > Model Referencing category.

Parameter

Description

“Model block version mismatch” on page
10-5

Select the diagnostic action to take when
loading or updating this model if Simulink
software detects a mismatch between

the version of the model used to create or
refresh a Model block in this model and the
referenced model's current version.

“Port and parameter mismatch” on page
10-7

Select the diagnostic action to take if
Simulink software detects a port or
parameter mismatch during model loading
or updating.

“Invalid root Inport/Outport block
connection” on page 10-9

Select the diagnostic action to take if
Simulink software detects invalid internal
connections to this model's root-level
Output port blocks.

“Unsupported data logging” on page
10-14

Select the diagnostic action to take if this
model contains To Workspace blocks or
Scope blocks with data logging enabled.

Related Examples
. “Model Referencing”
. Diagnosing Simulation Errors

. Solver Diagnostics on page 12-2

. Sample Time Diagnostics on page 11-2
. Data Validity Diagnostics on page 9-2

. Type Conversion Diagnostics on page 14-2

10-2

Model Configuration Parameters: Model Referencing Diagnostics

Connectivity Diagnostics on page 8-2

Compatibility Diagnostics on page 7-2

10-3

10 Diagnostics Parameters: Model Referencing

Model Referencing Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an
incompatibility relating to a model reference hierarchy.

Configuration

Set the parameters displayed.

Tips

+ To open the Diagnostics: Model Referencing pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Diagnostics > Model
Referencing.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

e R

Related Examples

. “Model Configuration Parameters: Model Referencing Diagnostics” on page 10-2

10-4

Model block version mismatch

Model block version mismatch

Description

Select the diagnostic action to take when loading or updating this model if Simulink
software detects a mismatch between the version of the model used to create or refresh a
Model block in this model and the referenced model's current version.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning and refreshes the Model block.
error

Simulink software displays an error message and does not refresh Model block.
Tip
If you have enabled display of referenced model version numbers on Model blocks for this

model (see “Display Version Numbers”), Simulink software displays a version mismatch
on the Model block icon, for example: Rev:1.0 1= 1.2,

Command-Line Information
Parameter: ModelReferenceVersionMismatchMessage

Value: "none® | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact

10-5

10 Diagnostics Parameters: Model Referencing

Application Setting

Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. “Model Referencing”

. Diagnosing Simulation Errors
. “Display Version Numbers”
. “Model Configuration Parameters: Model Referencing Diagnostics” on page 10-2

10-6

Port and parameter mismatch

Port and parameter mismatch

Description

Select the diagnostic action to take if Simulink software detects a port or parameter
mismatch during model loading or updating.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning and refreshes the Model block.
error

Simulink software displays an error message and does not refresh the Model block.

Tips

* Port mismatches occur when there is a mismatch between the I/0 ports of a Model
block and the root-level I/O ports of the model it references.

* Parameter mismatches occur when there is a mismatch between the parameter
arguments recognized by the Model block and the parameter arguments declared by
the referenced model.

* Model block icons can display a message indicating port or parameter mismatches.
To enable this feature, from the parent model's Simulink Editor, select Display >
Blocks > Block I/O Mismatch for Referenced Models.

Command-Line Information

Parameter: ModelReferencelOMismatchMessage
Value: "none® | "warning error”

Default: "none*”

10-7

10 Diagnostics Parameters: Model Referencing

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. “Model Referencing”
. Diagnosing Simulation Errors

“Model Configuration Parameters: Model Referencing Diagnostics” on page 10-2

10-8

Invalid root Inport/Outport block connection

Invalid root Inport/Outport block connection

Description

Select the diagnostic action to take if Simulink software detects invalid internal
connections to this model's root-level Output port blocks.

Category: Diagnostics

Settings
Default: none

none

Simulink software silently inserts hidden blocks to satisfy the constraints wherever
possible.

warning

Simulink software warns you that a connection constraint has been violated and
attempts to satisfy the constraint by inserting hidden blocks.

error

Simulink software terminates the simulation or code generation and displays an
error message.

Tips
* In some cases (such as function-call feedback loops), automatically inserted hidden
blocks may introduce delays and thus may change simulation results.

* Auto-inserting hidden blocks to eliminate root I/O problems stops at subsystem
boundaries. Therefore, you may need to manually modify models with subsystems
that violate any of the constraints below.

* The types of invalid internal connections are:

+ A root Output port is connected directly or indirectly to more than one nonvirtual
block port:

10-9

10 Diagnostics Parameters: Model Referencing

Zain
1
Ot 1

* A root Output port is connected to a Ground block:

Ground Cut1

Two root Outport blocks are connected to the same block port:

O 1

In1 Out1

—_—_
Out2

+ An Outport block is connected to some elements of a block output and not others:

- .m Ot
1
in Zain

Out2

10-10

Invalid root Inport/Outport block connection

* An Outport block is connected more than once to the same element:

In1

Gain

- Ot

* The signal driving the root outport is a test point:

The output port has a constant sample time, but the driving block has a non-constant

sample time:

1
Constant?

+
Ot 1

Ot

(D)

—_—
Out2

Subsystem

The driving block has a constant sample time and multiple output ports, and one of
the other output ports of the block is a test point.

10-11

10 Diagnostics Parameters: Model Referencing

10-12

. Ot
Zain
- lul :
1 g R (2)
Constant EEHTIFHEKtE Outh
Magnitude-Angle

The root output port is conditionally computed, you are using Function Prototype
Control or a Encapsulated C++ target, and the Function Prototype specification or

C++ target specification states that the output variable corresponding to that root
outport is returned by value.

Cak

Trigger
Chart
F
Il
Out1 —h-
Out1
Enabled Subsystemn
Command-Line Information
Parameter: ModelReferencelOMsg
Value: "none® | "warning® | "error”
Default: "none*
Recommended Settings
Application Setting
Debugging No impact
Traceability No impact

Invalid root Inport/Outport block connection

Application Setting
Efficiency No impact
Safety precaution error

Related Examples

. “Model Referencing”

Diagnosing Simulation Errors

“Model Configuration Parameters: Model Referencing Diagnostics” on page 10-2

10-13

10 Diagnostics Parameters: Model Referencing

Unsupported data logging

10-14

Description

Select the diagnostic action to take if this model contains To Workspace blocks or Scope
blocks with data logging enabled.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
+ The default action warns you that Simulink software does not support use of these
blocks to log data from referenced models.

+ See “Models with Model Referencing: Overriding Signal Logging Settings” for
information on how to log signals from a reference to this model.

Command-Line Information

Parameter: ModelReferenceDataloggingMessage
Value: "none® | "warning® | "error”

Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

Unsupported data logging

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

“Model Referencing”

Diagnosing Simulation Errors

“Models with Model Referencing: Overriding Signal Logging Settings”
To Workspace

Scope

“Model Configuration Parameters: Model Referencing Diagnostics” on page 10-2

10-15

Diagnostics Parameters: Sample Time

11 Diagnostics Parameters: Sample Time

Model Configuration Parameters: Sample Time Diagnostics

11-2

The Diagnostics > Sample Time category includes parameters for detecting issues
related to sample time and sample time specifications.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics > Sample Time pane, or on the All
Parameters tab in the Diagnostics > Sample Time category.

Parameter

Description

“Source block specifies -1 sample time” on
page 11-5

Select the diagnostic action to take if a
source block (such as a Sine Wave block)
specifies a sample time of -1.

“Multitask rate transition” on page
11-7

Select the diagnostic action to take if an
invalid rate transition occurred between
two blocks operating in multitasking mode.

“Single task rate transition” on page
11-9

Select the diagnostic action to take if a rate
transition occurred between two blocks
operating in single-tasking mode.

“Multitask conditionally executed
subsystem” on page 11-11

Select the diagnostic action to take if
Simulink software detects a subsystem
that may cause data corruption or non-
deterministic behavior.

“Tasks with equal priority” on page
11-13

Select the diagnostic action to take if
Simulink software detects two tasks with
equal priority that can preempt each other
in the target system.

“Enforce sample times specified by Signal
Specification blocks” on page 11-15

Select the diagnostic action to take if the
sample time of the source port of a signal
specified by a Signal Specification block

differs from the signal's destination port.

“Sample hit time adjusting” on page
11-17

Select the diagnostic action to take

if Simulink software makes a minor
adjustment to a sample hit time while
running the model.

“Unspecified inheritability of sample time”

on page 11-19

Select the diagnostic action to take if this
model contains S-functions that do not

Model Configuration Parameters: Sample Time Diagnostics

Parameter

Description

specify whether they preclude this model
from inheriting their sample times from a
parent model.

Related Examples

Diagnosing Simulation Errors

Solver Diagnostics on page 12-2

Data Validity Diagnostics on page 9-2

Type Conversion Diagnostics on page 14-2
Connectivity Diagnostics on page 8-2
Compatibility Diagnostics on page 7-2
Model Referencing Diagnostics on page 10-2

11-3

11 Diagnostics Parameters: Sample Time

Sample Time Diagnostics Overview

11-4

Specify what diagnostic actions Simulink software should take, if any, when it detects a
compilation error related to model sample times.

Configuration

Set the parameters displayed.

Tips

+ To open the Sample Time pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Sample Time.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

e R

Related Examples

. “Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

Source block specifies -1 sample time

Source block specifies -1 sample time

Description

Select the diagnostic action to take if a source block (such as a Sine Wave block) specifies
a sample time of -1.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* The Random Source block does not obey this parameter. If its Sample time
parameter is set to -1, the Random Source block inherits its sample time from its
output port and never produces warnings or errors.

* Some Communications System Toolbox™ blocks internally inherit sample times,
which can be a useful and valid modeling technique. Set this parameter to none for
these types of models.

Command-Line Information
Parameter: InheritedTsInSrcMsg
Value: "none® | "warning® | "error”
Default: "none*®

11-5

11 Diagnostics Parameters: Sample Time

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

11-6

Multitask rate transition

Multitask rate transition

Description

Select the diagnostic action to take if an invalid rate transition occurred between two
blocks operating in multitasking mode.

Category: Diagnostics

Settings
Default: error

warning
Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* This parameter allows you to adjust error checking for sample rate transitions
between blocks that operate at different sample rates.

+ Use this option for models of real-time multitasking systems to ensure detection
of illegal rate transitions between tasks that can result in a task's output being
unavailable when needed by another task. You can then use Rate Transition blocks to
eliminate such illegal rate transitions from the model.

Command-Line Information
Parameter: MultiTaskRateTransMsg
Value: "warning”® | "error”

Default: "error*

Recommended Settings

Application Setting
Debugging No impact

11-7

11 Diagnostics Parameters: Sample Time

11-8

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

Rate Transition

“Model Execution and Rate Transitions” (Simulink Coder)
Single-Tasking and Multitasking Execution Modes (Simulink Coder)
“Handle Rate Transitions” (Simulink Coder)

“Treat each discrete rate as a separate task” on page 17-40
Diagnosing Simulation Errors

“Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

Single task rate transition

Single task rate transition

Description

Select the diagnostic action to take if a rate transition occurred between two blocks
operating in single-tasking mode.

Category: Diagnostics

Settings
Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.

Tips
* This parameter allows you to adjust error checking for sample rate transitions
between blocks that operate at different sample rates.

* Use this parameter when you are modeling a single-tasking system. In such systems,
task synchronization is not an issue.

* Since variable step solvers are always single tasking, this parameter applies to them.

Command-Line Information
Parameter: SingleTaskRateTransMsg
Value: "none® | "warning® | "error”
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact

11-9

11 Diagnostics Parameters: Sample Time

11-10

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution none or error

Related Examples

Rate Transition

“Model Execution and Rate Transitions” (Simulink Coder)
Single-Tasking and Multitasking Execution Modes (Simulink Coder)
“Handle Rate Transitions” (Simulink Coder)

“Treat each discrete rate as a separate task” on page 17-40
Diagnosing Simulation Errors

“Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

Multitask conditionally executed subsystem

Multitask conditionally executed subsystem

Description

Select the diagnostic action to take if Simulink software detects a subsystem that may
cause data corruption or non-deterministic behavior.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* These types of subsystems can be caused by either of the following conditions:

Your model uses multitasking solver mode and it contains an enabled subsystem
that operates at multiple rates.

* Your model contains a conditionally executed subsystem that can reset its states
and that contains an asynchronous subsystem.

These types of subsystems can cause corrupted data or nondeterministic behavior in a
real-time system that uses code generated from the model.

* For models that use multitasking solver mode and contain an enabled subsystem
that operates at multiple rates, consider using single-tasking solver mode or using a
single-rate enabled subsystem instead.

* For models that contain a conditionally executed subsystem that can reset its states
and that contains an asynchronous subsystem, consider moving the asynchronous
subsystem outside the conditionally executed subsystem.

11-11

11 Diagnostics Parameters: Sample Time

Command-Line Information
Parameter: MultiTaskCondExecSysMsg

Value: "none” | "warning” | "error*
Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
Related Examples

. “Treat each discrete rate as a separate task” on page 17-40
. Diagnosing Simulation Errors

“Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

11-12

Tasks with equal priority

Tasks with equal priority

Description

Select the diagnostic action to take if Simulink software detects two tasks with equal
priority that can preempt each other in the target system.

Category: Diagnostics

Settings

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

This condition can occur when one asynchronous task of the target represented by
this model has the same priority as one of the target's asynchronous tasks.

This option must be set to Error if the target allows tasks having the same priority to
preempt each other.

Command-Line Information
Parameter: TasksWithSamePriorityMsg

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

11-13

11 Diagnostics Parameters: Sample Time

11-14

Application
Traceability
Efficiency

Safety precaution

Related Examples

. Diagnosing Simulation Errors

Setting

No impact

No impact
none or error

. “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

. “Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

Enforce sample times specified by Signal Specification blocks

Enforce sample times specified by Signal Specification blocks

Description

Select the diagnostic action to take if the sample time of the source port of a signal
specified by a Signal Specification block differs from the signal's destination port.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* The Signal Specification block allows you to specify the attributes of the signal
connected to its input and output ports. If the specified attributes conflict with the
attributes specified by the blocks connected to its ports, Simulink software displays an
error when it compiles the model, for example, at the beginning of a simulation. If no
conflict exists, Simulink software eliminates the Signal Specification block from the
compiled model.

* You can use the Signal Specification block to ensure that the actual attributes of a
signal meet desired attributes, or to ensure correct propagation of signal attributes
throughout a model.

Command-Line Information

Parameter: SigSpecEnsureSampleTimeMsg
Value: "none® | "warning error”
Default: "warning”

11-15

11 Diagnostics Parameters: Sample Time

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors
. Signal Specification

“Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

11-16

Sample hit time adjusting

Sample hit time adjusting

Description

Select the diagnostic action to take if Simulink software makes a minor adjustment to a
sample hit time while running the model.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning

Simulink software displays a warning.

Tips

* Simulink software might change a sample hit time if that hit time is close to the hit
time for another task. If Simulink software considers the difference to be due only
to numerical errors (for example, precision issues or roundoff errors), it changes the
sample hits of the faster task or tasks to exactly match the time of the slowest task
that has that hit.

* Over time, these sample hit changes might cause a discrepancy between the
numerical simulation results and the actual theoretical results.

* When this option is set to warning, the MATLAB Command Window displays a
warning like the following when Simulink software detects a change in the sample hit
time:

Warning: Timing engine warning: Changing the hit time for ...
Command-Line Information
Parameter: TimeAdjustmentMsg

Value: "none*® | "warning*”
Default: "none*®

11-17

11 Diagnostics Parameters: Sample Time

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. Diagnosing Simulation Errors
. Solver Diagnostics on page 12-2

“Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

11-18

Unspecified inheritability of sample time

Unspecified inheritability of sample time

Description

Select the diagnostic action to take if this model contains S-functions that do not specify
whether they preclude this model from inheriting their sample times from a parent
model.

Category: Diagnostics

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* Not specifying an inheritance rule may lead to incorrect simulation results.

+ Simulink software checks for this condition only if the solver used to simulate this
model is a fixed-step discrete solver and the periodic sample time constraint for the
solver is set to ensure sample time independence

* For more information, see “Periodic sample time constraint” on page 17-59.

Command-Line Information
Parameter: UnknownTslnhSupMsg
Value: "none” | "warning” | "error”
Default: "warning”

11-19

11 Diagnostics Parameters: Sample Time

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors

. “Periodic sample time constraint” on page 17-59
. Solver Diagnostics on page 12-2

“Model Configuration Parameters: Sample Time Diagnostics” on page 11-2

11-20

Diagnostics Parameters

12 Diagnostics Parameters

Model Configuration Parameters: Diagnostics

12-2

The Diagnostics category includes parameters for detecting issues related to solvers
and solver settings, for example, algebraic loops.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics pane, or on the All Parameters tab in

the Diagnostics > Solver category.

Parameter

Description

“Algebraic loop” on page 12-5

Select the diagnostic action to take if
Simulink software detects an algebraic loop
while compiling the model.

“Minimize algebraic loop” on page 12-7

Select the diagnostic action to take if
artificial algebraic loop minimization
cannot be performed for an atomic
subsystem or Model block because an input
port has direct feedthrough.

“Block priority violation” on page 12-9

Select the diagnostic action to take if
Simulink software detects a block priority
specification error.

“Min step size violation” on page 12-11

Select the diagnostic action to take if
Simulink software detects that the next
simulation step is smaller than the
minimum step size specified for the model.

“Consecutive zero-crossings violation” on
page 12-13

Select the diagnostic action to take when
Simulink software detects that the number
of consecutive zero crossings exceeds the
specified maximum.

“Automatic solver parameter selection” on
page 12-15

Select the diagnostic action to take if
Simulink software changes a solver
parameter setting.

“Extraneous discrete derivative signals” on
page 12-17

Select the diagnostic action to take when
a discrete signal appears to pass through
a Model block to the input of a block with
continuous states.

Model Configuration Parameters: Diagnostics

Parameter

Description

“State name clash” on page 12-19

Select the diagnostic action to take when a
name 1s used for more than one state in the
model.

“SimState interface checksum mismatch”
on page 12-21

Use this check to ensure that the interface
checksum is i1dentical to the model
checksum before loading the SimState.

Related Examples
. “Algebraic Loops”

. Diagnosing Simulation Errors

Sample Time Diagnostics on page 11-2
Data Validity Diagnostics on page 9-2

Type Conversion Diagnostics on page 14-2
Connectivity Diagnostics on page 8-2
Compatibility Diagnostics on page 7-2
Model Referencing Diagnostics on page 10-2

“Model Configuration Parameters: Advanced Parameters” on page 2-2

12-3

12 Diagnostics Parameters

Solver Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when it detects an
abnormal condition with the solver.

Configuration

Set the parameters displayed.

Tips

* To open the Diagnostics pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

e R

Related Examples

. “Model Configuration Parameters: Diagnostics” on page 12-2

12-4

Algebraic loop

Algebraic loop

Description

Select the diagnostic action to take if Simulink software detects an algebraic loop while
compiling the model.

Category: Diagnostics

Settings
Default: warning

none

When the Simulink software detects an algebraic loop, the software tries to solve the
algebraic loop. If the software cannot solve the algebraic loop, it reports an error and
the simulation terminates.

warning

When Simulink software detects an algebraic loop, it displays a warning and tries to
solve the algebraic loop. If the software cannot solve the algebraic loop, it reports an
error and the simulation terminates.

error

When Simulink software detects an algebraic loop, it terminates the simulation,
displays an error message, and highlights the portion of the block diagram that
comprises the loop.

Tips

* An algebraic loop generally occurs when an input port with direct feedthrough is
driven by the output of the same block, either directly, or by a feedback path through
other blocks with direct feedthrough. An example of an algebraic loop is this simple
scalar loop.

u

— i+ |,

[

12-5

12 Diagnostics Parameters

12-6

* When a model contains an algebraic loop, Simulink software calls a loop-solving
routine at each time step. The loop solver performs iterations to determine the
solution to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

* Use the error option to highlight algebraic loops when you simulate a model. This
causes Simulink software to display an error dialog (the Diagnostic Viewer) and
recolor portions of the diagram that represent the first algebraic loop that it detects.
Simulink software uses red to color the blocks and lines that constitute the loop.
Closing the error dialog restores the diagram to its original colors.

* See Algebraic Loops for more information.

Command-Line Information
Parameter: AlgebraiclLoopMsg
Value: "none” | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Algebraic Loops
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Diagnostics” on page 12-2

Minimize algebraic loop

Minimize algebraic loop

Description

Select the diagnostic action to take if artificial algebraic loop minimization cannot be
performed for an atomic subsystem or Model block because an input port has direct
feedthrough.

When you set the Minimize algebraic loop occurrences parameter for an atomic
subsystem or a Model block, if Simulink detects an artificial algebraic loop, it attempts
to eliminate the loop by checking for non-direct-feedthrough blocks before simulating the
model. If Simulink cannot minimize the artificial algebraic loop, the simulation performs
the diagnostic action specified by the Minimize algebraic loop parameter.

Category: Diagnostics

Settings
Default: warning

none

Simulink takes no action.
warning

Simulink displays a warning that it cannot minimize the artificial algebraic loop.
error

Simulink terminates the simulation and displays an error that it cannot minimize
the artificial algebraic loop.

Tips

+ If the port is involved in an artificial algebraic loop, Simulink software can remove the
loop only if at least one other input port in the loop lacks direct feedthrough.

* Simulink software cannot minimize artificial algebraic loops containing signals
designated as test points (see Working with Test Points).

Command-Line Information
Parameter: ArtificialAlgebraiclLoopMsg

12-7

12 Diagnostics Parameters

12-8

Value: "none® | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Efficiency No impact
Traceability No impact
Safety precaution error

Related Examples

Minimizing Artificial Algebraic Loops Using Simulink
Diagnosing Simulation Errors

Working with Test Points

“Model Configuration Parameters: Diagnostics” on page 12-2

Block priority violation

Block priority violation

Description

Select the diagnostic action to take if Simulink software detects a block priority
specification error.

Category: Diagnostics

Settings
Default: warning

warning

When Simulink software detects a block priority specification error, it displays a
warning.

error

When Simulink software detects a block priority specification error, it terminates the
simulation and displays an error message.

Tips

* Simulink software allows you to assign update priorities to blocks. Simulink software
executes the output methods of higher priority blocks before those of lower priority
blocks.

* Simulink software honors the block priorities that you specify only if they are
consistent with the Simulink block sorting algorithm. If Simulink software is unable
to honor a user specified block priority, it generates a block priority specification
error.

Command-Line Information

Parameter: BlockPriorityViolationMsg
Value: "warning” | "error*

Default: "warning”

12-9

12 Diagnostics Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Controlling and Displaying the Sorted Order

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Diagnostics” on page 12-2

12-10

Min step size violation

Min step size violation

Description

Select the diagnostic action to take if Simulink software detects that the next simulation
step is smaller than the minimum step size specified for the model.

Category: Diagnostics

Settings
Default: warning

warning
Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

* A minimum step size violation can occur if the specified error tolerance for the model
requires a step size smaller than the specified minimum step size. See “Min step size”
on page 17-23 and “Maximum order” on page 17-32 for more information.

+ Simulink software allows you to specify the maximum number of consecutive
minimum step size violations permitted (see “Number of consecutive min steps” on
page 17-36).

Command-Line Information
Parameter: MinStepSizeMsg
Value: "warning”® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

12-11

12 Diagnostics Parameters

12-12

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

“Min step size” on page 17-23

“Maximum order” on page 17-32

“Number of consecutive min steps” on page 17-36
“Purely Discrete Systems”

Diagnosing Simulation Errors

“Model Configuration Parameters: Diagnostics” on page 12-2

Consecutive zero-crossings violation

Consecutive zero-crossings violation

Description

Select the diagnostic action to take when Simulink software detects that the number of
consecutive zero crossings exceeds the specified maximum.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

+ If you select warning or error, Simulink software reports the current simulation
time, the number of consecutive zero crossings counted, and the type and name of the
block in which Simulink software detected the zero crossings.

* For more information, see “Preventing Excessive Zero Crossings”.

Dependency

This diagnostic applies only when you are using a variable-step solver and the zero-
crossing control is set to either Enable all or Use local settings.

Command-Line Information
Parameter: MaxConsecutiveZCsMsg
Value: "none*® | "warning”

Default: "error*

12-13

12 Diagnostics Parameters

12-14

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution warning or error

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 17-48

“Number of consecutive zero crossings” on page 17-53
“Time tolerance” on page 17-50

Diagnosing Simulation Errors

“Model Configuration Parameters: Diagnostics” on page 12-2

Automatic solver parameter selection

Automatic solver parameter selection

Description

Select the diagnostic action to take if Simulink software changes a solver parameter
setting.

Category: Diagnostics

Settings
Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.

Tips
When enabled, this option notifies you if:

+ Simulink changes a user-modified parameter to make it consistent with other model
settings.

* Simulink automatically selects solver parameters for the model, such as
FixedStepSize.

For example, if you simulate a discrete model that specifies a continuous solver, Simulink
changes the solver type to discrete and displays a warning about this change.

Command-Line Information
Parameter: SolverPrmCheckMsg
Value: "none® | "warning error”
Default: "warning”

12-15

12 Diagnostics Parameters

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples

. Diagnosing Simulation Errors
. Choosing a Solver

. “Model Configuration Parameters: Diagnostics” on page 12-2

12-16

Extraneous discrete derivative signals

Extraneous discrete derivative signals

Description

Select the diagnostic action to take when a discrete signal appears to pass through a
Model block to the input of a block with continuous states.

Category: Diagnostics

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

+ This error can occur if a discrete signal passes through a Model block to the input of
a block with continuous states, such as an Integrator block. In this case, Simulink
software cannot determine with certainty the minimum rate at which it needs to reset
the solver to solve this model accurately.

+ If this diagnostic is set to none or warning, Simulink software resets the solver
whenever the value of the discrete signal changes. This ensures accurate simulation
of the model if the discrete signal is the source of the signal entering the block with
continuous states. However, if the discrete signal is not the source of the signal
entering the block with continuous states, resetting the solver at the rate the discrete
signal changes can lead to the solver being reset more frequently than necessary,
slowing down the simulation.

+ If this diagnostic is set to error, Simulink software halts when compiling this model
and displays an error.

12-17

12 Diagnostics Parameters

Dependency

This diagnostic applies only when you are using a variable-step ode solver and the block
diagram contains Model blocks.

Command-Line Information

Parameter: ModelReferenceExtraNoncontSigs
Value: "none” | "warning® | "error*

Default: “"error*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. Diagnosing Simulation Errors
. Choosing a Solver

. “Model Configuration Parameters: Diagnostics” on page 12-2

12-18

State name clash

State name clash

Description

Select the diagnostic action to take when a name is used for more than one state in the
model.

Category: Diagnostics

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning.

Tips
+ This diagnostic applies for continuous and discrete states during simulation.

* This diagnostic applies only if you save states to the MATLAB workspace using the
format Structure or Structure with time. If you do not save states in structure
format, the state names are not used, and therefore the diagnostic will not warn you
about a naming conflict.

Command-Line Information
Parameter: StateNameClashWarn
Value: "none” | "warning”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

12-19

12 Diagnostics Parameters

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. Diagnosing Simulation Errors

. “Model Configuration Parameters: Data Import/Export” on page 3-2
. “Save Runtime Data from Simulation”

. “Model Configuration Parameters: Diagnostics” on page 12-2

12-20

SimState interface checksum mismatch

SimState interface checksum mismatch

Description

Use this check to ensure that the interface checksum is identical to the model checksum
before loading the SimState.

Category: Diagnostics

Settings
Default: warning

none

Simulink software does not compare the interface checksum to the model checksum.
warning

The interface checksum in the SimState is different than the model checksum.
error

When Simulink detects that a change in the configuration settings occurred after
saving the SimState, it does not load the SimState and reports an error.

Command-Line Information

Parameter: SimStatelnterfaceChecksumMismatchMsg
Value: "warning® | "error® | "none*
Default: "warning”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

12-21

12 Diagnostics Parameters

See Also

Simulink.BlockDiagram.getChecksum

Related Examples

“Save and Restore Simulation State as SimState”

“Model Configuration Parameters: Diagnostics” on page 12-2

12-22

Diagnostics Parameters: Stateflow

13 Diagnostics Parameters: Stateflow

Model Configuration Parameters: Stateflow Diagnostics

13-2

The Diagnostics > Stateflow category includes parameters for detecting issues related

to Stateflow charts.

In the Configuration Parameters dialog box, the following configuration parameters
are on the Commonly Used tab on the Diagnostics > Stateflow pane, or on the All
Parameters tab in the Diagnostics > Stateflow category.

Parameter

Description

“Unused data, events, messages, and
functions” on page 13-6

Select the diagnostic action to take for
detection of unused data, events, and
messages in a chart. Removing unused
data, events, and messages can minimize
the size of your model.

“Unexpected backtracking” on page
13-8

Select the diagnostic action to take when
a chart junction has both of the following
conditions. The junction:

+ Does not have an unconditional
transition path to a state or a terminal
junction

* Has multiple transition paths leading to
it

“Invalid input data access in chart
initialization” on page 13-10

Select the diagnostic action to take when a
chart:

+ Has the ExecuteAtlInitialization
property set to true

+ Accesses input data on a default
transition or associated state entry
actions, which execute at chart
initialization

“No unconditional default transitions” on
page 13-12

Select the diagnostic action to take when
a chart does not have an unconditional
default transition to a state or a junction.

Model Configuration Parameters: Stateflow Diagnostics

Parameter

Description

“Transition outside natural parent” on page
13-14

Select the diagnostic action to take when
a chart contains a transition that loops
outside of the parent state or junction.

“Undirected event broadcasts” on page
13-16

Select the diagnostic action to take when
a chart contains undirected local event
broadcasts.

“Transition action specified before
condition action” on page 13-18

Select the diagnostic action to take when
a transition action executes before a
condition action in a transition path with
multiple transition segments.

“Read-before-write to output in Moore
chart” on page 13-20

Select the diagnostic action to take when a
Moore chart uses a previous output value
to determine the current state.

“Absolute time temporal value shorter than
sampling period” on page 13-22

Select the diagnostic action to take when a
state or transition absolute time operator
uses a time value that is shorter than the
sample time for the Stateflow block.

“Self transition on leaf state” on page
13-24

Select the diagnostic action to take when
you can remove a self-transition on a leaf
state.

“Execute-at-Initialization disabled in
presence of input events” on page 13-26

Select the diagnostic action to take
when Stateflow detects triggered or
enabled charts that are not running at
initialization.

“Use of machine-parented data instead of
Data Store Memory” on page 13-28

Select the diagnostic action to take when
Stateflow detects machine-parented data
that can replace with chart-parented data
of scope Data Store Memory.

“Unreachable execution path” on page
13-30

Select the diagnostic action to take when
there are chart constructs not on a valid
execution path.

Related Examples

“Model Parameters”

13-3

13 Diagnostics Parameters: Stateflow

13-4

Diagnosing Simulation Errors

Solver Diagnostics on page 12-2

Sample Time Diagnostics on page 11-2
Data Validity Diagnostics on page 9-2

Type Conversion Diagnostics on page 14-2
Connectivity Diagnostics on page 8-2
Compatibility Diagnostics on page 7-2
Model Referencing Diagnostics on page 10-2

Stateflow Diagnostics Overview

Stateflow Diagnostics Overview

Specify the diagnostic actions to take for detection of unwanted chart designs.

Configuration

Set the parameters displayed.

Tips

+ To open the Stateflow pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Stateflow.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

COET —

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-5

13 Diagnostics Parameters: Stateflow

Unused data, events, messages, and functions

13-6

Description

Select the diagnostic action to take for detection of unused data, events, messages,
and functions in a chart. Removing unused data, events, messages, and functions can
minimize the size of your model.

Category: Diagnostics

Settings
Default: warning

none
No warning or error appears.
warning

A warning appears, with a link to delete the unused data, event, or message in your
chart.

error

An error appears and stops the simulation.
Tip
This diagnostic does not detect these types of data and events:

* Machine-parented data
* Inputs and outputs of MATLAB functions

* Input events

Command-Line Information
Parameter: SFUnusedDataAndEventsDiag
Value: "none® | "warning error”
Default: "warning”

Unused data, events, messages, and functions

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

none (for production code generation)
Safety precaution warning

Related Examples
. “Diagnostic for Detecting Unused Events” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-7

13 Diagnostics Parameters: Stateflow

Unexpected backtracking

Description

Select the diagnostic action to take when a chart junction has both of the following
conditions. The junction:

* Does not have an unconditional transition path to a state or a terminal junction
* Has multiple transition paths leading to it

This chart configuration can lead to unwanted backtracking during simulation.

Category: Diagnostics

Settings
Default: error

none

No warning or error appears.
warning

A warning appears, with a link to examples of unwanted backtracking.
error

An error appears and stops the simulation.
Tip

To avoid unwanted backtracking, consider adding an unconditional transition from the
chart junction to a terminal junction.

Command-Line Information

Parameter: SFUnexpectedBacktrackingDiag
Value: "none® | "warning® | "error*
Default: “"error*

13-8

Unexpected backtracking

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

No impact (for production code generation)
Safety precaution error

Related Examples

. “Best Practices for Creating Flow Charts” (Stateflow)
. “Backtrack in Flow Charts” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-9

13 Diagnostics Parameters: Stateflow

Invalid input data access in chart initialization

13-10

Description
Select the diagnostic action to take when a chart:

* Has the ExecuteAtlInitialization property set to true
+ Accesses input data on a default transition or associated state entry actions, which
execute at chart initialization

In this chart configuration, blocks that connect to chart input ports might not initialize
their outputs during initialization. To locate this configuration in your model and correct
it, use this diagnostic.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.
Tip

In charts that do not contain states, the ExecuteAtInitial ization property has no
effect.

Command-Line Information

Parameter: SFInval idlnputDataAccessinChartinitDiag
Value: "none® | "warning error”

Default: "warning”

Invalid input data access in chart initialization

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

No impact (for production code generation)
Safety precaution error

Related Examples
. “Execution of a Chart at Initialization” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-11

13 Diagnostics Parameters: Stateflow

No unconditional default transitions

Description

Select the diagnostic action to take when a chart does not have an unconditional default
transition to a state or a junction.

This chart construct can cause inconsistency errors. To locate this construct in your
model and correct it, use this diagnostic. If a chart contains local event broadcasts or
implicit events, detection of a state inconsistency might not be possible until run time.

Category: Diagnostics

Settings
Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFNoUnconditionalDefaultTransitionDiag
Value: "none® | "warning® | "error*

Default: "warning”

Recommended Settings

Application Setting

Debugging error

Traceability No impact

Efficiency No impact (for simulation)

none (for production code generation)

13-12

No unconditional default transitions

Application Setting
Safety precaution error

Related Examples

. “State Inconsistencies in a Chart” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-13

13 Diagnostics Parameters: Stateflow

Transition outside natural parent

13-14

Description

Select the diagnostic action to take when a chart contains a transition that loops outside
of the parent state or junction.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.

error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFTransitionOutsideNaturalParentDiag

Value: "none” | "warning® | "error”

Default: "warning”

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

none (for production code generation)
Safety precaution error

Transition outside natural parent

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-15

13 Diagnostics Parameters: Stateflow

Undirected event broadcasts

Description

Select the diagnostic action to take when a chart contains undirected local event
broadcasts.

Undirected local event broadcasts can cause unwanted recursive behavior in a chart and
inefficient code generation. To flag these types of event broadcasts and fix them, use this
diagnostic.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUndirectedBroadcastEventsDiag
Value: "none*® | "warning” | "error*

Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency warning

13-16

Undirected event broadcasts

Application Setting
Safety precaution error

Related Examples
. “Guidelines for Avoiding Unwanted Recursion in a Chart” (Stateflow)
. “Broadcast Events to Synchronize States” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-17

13 Diagnostics Parameters: Stateflow

Transition action specified before condition action

13-18

Description

Select the diagnostic action to take when a transition action executes before a condition
action in a transition path with multiple transition segments.

When a transition with a specified transition action precedes a transition with a specified
condition action in the same transition path, out-of-order execution can occur. To flag
such behavior in your chart and fix it, use this diagnostic.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFTransitionActionBeforeConditionDiag

Value: "none” | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability warning
Efficiency warning

Transition action specified before condition action

Application Setting
Safety precaution warning

Related Examples
. “Transition Action Types” (Stateflow)
. “Transitions” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-19

13 Diagnostics Parameters: Stateflow

Read-before-write to output in Moore chart

13-20

Description

Select the diagnostic action to take when a Moore chart uses a previous output value
to determine the current state. This behavior violates Moore machine semantics. In a
Moore machine, output is a function of current state only. To allow output values from
the previous time step in calculating current state, set this diagnostic to warning or
none.

Category: Diagnostics

Settings
Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFOutputUsedAsState InMooreChartDiag
Value: "none® | "warning® | "error”

Default: "error*

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency error
Safety precaution error

Read-before-write to output in Moore chart

Related Examples
. “Design Considerations for Moore Charts” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-21

13 Diagnostics Parameters: Stateflow

Absolute time temporal value shorter than sampling period

13-22

Description

Select the diagnostic action to take when a state or transition absolute time operator
uses a time value that is shorter than the sample time for the Stateflow block. Stateflow
cannot update states in smaller increments than the sample time for the block. For
example, a model with a sample rate of 0.1 sec and an operator after(5,usec)
triggers this diagnostic. If this parameter is set to warning or none, then the operator is
evaluated as true at every time step.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFTemporalDelaySmal lerThanSampleTimeDiag
Value: "none*® | "warning” | "error*

Default: "warning”

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency error

Absolute time temporal value shorter than sampling period

Application Setting
Safety precaution error

Related Examples
. “Set Stateflow Block Update Method” (Stateflow)
. “Control Chart Execution Using Temporal Logic” (Stateflow)

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-23

13 Diagnostics Parameters: Stateflow

Self transition on leaf state

Description

Select the diagnostic action to take when you can remove a self-transition on a leaf state.
Some self-transitions with no actions in the leaf state or on the self-transition have no
effect on chart execution. Removing these transitions simplifies the state diagram.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFSelfTransitionDiag
Value: "none” | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency No impact
Safety precaution error

13-24

Self transition on leaf state

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-25

13 Diagnostics Parameters: Stateflow

Execute-at-Initialization disabled in presence of input events

13-26

Description

Select the diagnostic action to take when Stateflow detects triggered or enabled charts
that are not running at initialization. When the chart does not execute at initialization,
then the chart default transitions are processed at the first input event. Until then, any
data that you initialize in the chart or active state data is not valid at time O.

To initialize the chart configuration at time O rather than at the first input event, select
the chart property Execute (enter) Chart At Initialization.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFExecutionAtlnitializationDiag
Value: "none® | "warning® | "error-

Default: "warning”

Recommended Settings

Application Setting
Debugging error
Traceability No impact

Execute-at-Initialization disabled in presence of input events

Application Setting
Efficiency No impact
Safety precaution error

Related Examples

. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-27

13 Diagnostics Parameters: Stateflow

Use of machine-parented data instead of Data Store Memory

Description

Select the diagnostic action to take when Stateflow detects machine-parented data that
you can replace with chart-parented data of scope Data Store Memory.

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFMachineParentedDataDiag

Value: "none” | "warning” | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. “Best Practices for Using Data in Charts” (Stateflow)

13-28

Use of machine-parented data instead of Data Store Memory

“Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

13-29

13 Diagnostics Parameters: Stateflow

Unreachable execution path

Description

Select the diagnostic action to take when there are chart constructs not on a valid
execution path. These constructs can cause unreachable execution paths:

Dangling transitions not connected to a destination object.

Transition shadowing caused by an unconditional transition originating from a source
that prevents other transitions from the same source from executing.

States or junctions not connected as a destination from a valid transition.

--

Unconditional paths out of states. In this chart, initially state A and state B are active.
The chart then takes the unconditional transition to state C, and state C becomes
active. The transition to state B1 does not execute and state B1 is unreachable.

13-30

Unreachable execution path

B1

Category: Diagnostics

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUnreachableExecutionPathDiag
Value: "none® | "warning® | "error*

Default: "warning”

Recommended Settings

Application Setting
Debugging warning

13-31

13 Diagnostics Parameters: Stateflow

13-32

Application Setting
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
Related Examples
. “Detection of Transition Shadowing” (Stateflow)
. “Model Configuration Parameters: Stateflow Diagnostics” on page 13-2

. “Modeling Rules That Stateflow Detects During Edit Time” (Stateflow)

Diagnostics Parameters: Type
Conversion

14 Diagnostics Parameters: Type Conversion

Model Configuration Parameters: Type Conversion Diagnostics

The Diagnostics > Type Conversion category includes parameters for detecting issues
related to data type conversions (for example, from 1nt32 to single).

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Diagnostics > Type Conversion pane, or on the
All Parameters tab in the Diagnostics > Type Conversion category.

Parameter Description
“Unnecessary type conversions” on page Select the diagnostic action to take when
14-5 Simulink software detects a Data Type

Conversion block used where no type
conversion is necessary.

“Vector/matrix block input conversion” on |Select the diagnostic action to take when
page 14-7 Simulink software detects a vector-to-
matrix or matrix-to-vector conversion at a
block input.

“32-bit integer to single precision float Select the diagnostic action to take if

conversion” on page 14-9 Simulink software detects a 32-bit integer
value was converted to a floating-point
value.

“Detect underflow” on page 14-11 Select the diagnostic action to take if

Simulink software detects a 32-bit integer
value was converted to a floating-point
value.

“Detect precision loss” on page 14-13 Specifies diagnostic action to take when a
fixed-point constant precision loss occurs
during simulation.

“Detect overflow” on page 14-15 Specifies diagnostic action to take when a
fixed-point constant overflow occurs during
simulation.

Related Examples
. Diagnosing Simulation Errors

. “Data Types Supported by Simulink”

14-2

Model Configuration Parameters: Type Conversion Diagnostics

Solver Diagnostics on page 12-2

Sample Time Diagnostics on page 11-2
Data Validity Diagnostics on page 9-2
Connectivity Diagnostics on page 8-2
Compatibility Diagnostics on page 7-2
Model Referencing Diagnostics on page 10-2

14-3

14 Diagnostics Parameters: Type Conversion

Type Conversion Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a data
type conversion problem while compiling the model.

Configuration

Set the parameters displayed.

Tips

+ To open the Type Conversion pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Diagnostics > Type Conversion.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

e R

Related Examples

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-4

Unnecessary type conversions

Unnecessary type conversions

Description

Select the diagnostic action to take when Simulink software detects a Data Type
Conversion block used where no type conversion is necessary.

Category: Diagnostics

Settings
Default: none

none
Simulink software takes no action.
warning

Simulink software displays a warning.

Command-Line Information

Parameter: UnnecessaryDatatypeConvMsg
Value: "none® | "warning*®

Default: "none*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning

Related Examples
. Diagnosing Simulation Errors

. Data Type Conversion

14-5

14 Diagnostics Parameters: Type Conversion

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-6

Vector/matrix block input conversion

Vector/matrix block input conversion

Description

Select the diagnostic action to take when Simulink software detects a vector-to-matrix or
matrix-to-vector conversion at a block input.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

Simulink software converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

+ If a vector signal is connected to an input that requires a matrix, Simulink software
converts the vector to a one-row or one-column matrix.

+ If a one-column or one-row matrix is connected to an input that requires a vector,
Simulink software converts the matrix to a vector.

+ If the inputs to a block consist of a mixture of vectors and matrices and the matrix
inputs all have one column or one row, Simulink software converts the vectors to
matrices having one column or one row, respectively.

Command-Line Information
Parameter: VectorMatrixConversionMsg
Value: "none” | "warning® | "error*

14-7

14 Diagnostics Parameters: Type Conversion

Default: "none*"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Related Examples
. Diagnosing Simulation Errors
. Determining Output Signal Dimensions

“Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-8

32-bit integer to single precision float conversion

32-bit integer to single precision float conversion

Description

Select the diagnostic action to take if Simulink software detects a 32-bit integer value
was converted to a floating-point value.

Category: Diagnostics

Settings
Default: warning
none
Simulink software takes no action.

warning

Simulink software displays a warning.
Tip

Converting a 32-bit integer value to a floating-point value can result in a loss of
precision. See Working with Data Types for more information.

Command-Line Information
Parameter: Int32ToFloatConvMsg
Value: "none*® | "warning*®
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning

14-9

14 Diagnostics Parameters: Type Conversion

Related Examples

Diagnosing Simulation Errors

. Working with Data Types

“Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-10

Detect underflow

Detect underflow

Specifies diagnostic action to take when a fixed-point constant underflow occurs during
simulation.

Description

Select the diagnostic action to take if Simulink software detects a 32-bit integer value
was converted to a floating-point value.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
+ This diagnostic applies only to fixed-point constants (net slope and net bias).

+ Fixed-point constant underflow occurs when Simulink software encounters a fixed-
point constant whose data type does not have enough precision to represent the ideal
value of the constant because the ideal value is too small.

* When fixed-point constant underflow occurs, casting the ideal value to the data type
causes the value of the fixed-point constant to become zero, and therefore to differ
from its ideal value.

Dependency

This parameter requires a Fixed-Point Designer license.

14-11

14 Diagnostics Parameters: Type Conversion

Command-Line Information
Parameter:FixptConstUnderflowMsg

Value: "none” | "warning® | "error”
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. Net Slope and Net Bias Precision Issues (Fixed-Point Designer)

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-12

Detect precision loss

Detect precision loss

Description

Specifies diagnostic action to take when a fixed-point constant precision loss occurs
during simulation.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
* This diagnostic applies only to fixed-point constants (net slope and net bias).

* Precision loss occurs when Simulink software converts a fixed-point constant to a
data type which does not have enough precision to represent the exact value of the
constant. As a result, the quantized value differs from the ideal value.

* Fixed-point constant precision loss differs from fixed-point constant overflow.
Overflow occurs when the range of the parameter's data type, that is, the maximum
value that it can represent, is smaller than the ideal value of the parameter.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstPrecisionLossMsg

14-13

14 Diagnostics Parameters: Type Conversion

Value: "none® | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. Net Slope and Net Bias Precision Issues (Fixed-Point Designer)

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-14

Detect overflow

Detect overflow

Description

Specifies diagnostic action to take when a fixed-point constant overflow occurs during
simulation.

Category: Diagnostics

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips
+ This diagnostic applies only to fixed-point constants (net slope and net bias).

* Overflow occurs when the Simulink software converts a fixed-point constant to a data
type whose range is not large enough to accommodate the ideal value of the constant.
The ideal value is either too large or too small to be represented by the data type. For
example, suppose that the ideal value is 200 and the converted data type is int8.
Overflow occurs in this case because the maximum value that int8 can represent is
127.

+ Fixed-point constant overflow differs from fixed-point constant precision loss.
Precision loss occurs when the ideal fixed-point constant value is within the range of
the data type and scaling being used, but cannot be represented exactly.

Dependency

This parameter requires a Fixed-Point Designer license.

14-15

14 Diagnostics Parameters: Type Conversion

Command-Line Information
Parameter:FixptConstOverflowMsg

Value: "none” | "warning® | "error”
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. Net Slope and Net Bias Precision Issues (Fixed-Point Designer)

. “Model Configuration Parameters: Type Conversion Diagnostics” on page 14-2

14-16

Model Referencing Parameters

15 Model Referencing Parameters

Model Configuration Parameters: Model Referencing

15-2

The Model Referencing category includes parameters for configuring the inclusion of

other models (Model blocks).

On the Configuration Parameters dialog box, the following configuration parameters
are on the Commonly Used tab on the Model Referencing pane, or on the All
Parameters tab in the Model Referencing category.

Parameter

Description

“Rebuild” on page 15-5

Select the method used to determine
when to rebuild simulation and Simulink
Coder targets for referenced models before
updating, simulating, or generating code
from this model.

“Never rebuild diagnostic” on page
15-15

Select the diagnostic action that Simulink
software should take if it detects a model
reference target that needs to be rebuilt.

“Enable parallel model reference builds” on
page 15-17

Specify whether to use automatic parallel
building of the model reference hierarchy
whenever possible.

“MATLAB worker initialization for builds”
on page 15-19

Specify how to initialize MATLAB workers
for parallel builds.

“Enable strict scheduling checks for
referenced export-function models” on page
15-21

This parameter enables these checks for
referenced export-function models:

* Scheduling order consistency of
function-call subsystems in the
referenced model

+ Sample time consistency across the
referenced model boundary

“Total number of instances allowed per top
model” on page 15-22

Specify how many references to this model
can occur in another model.

“Pass fixed-size scalar root inputs by value
for code generation” on page 15-24

Specify whether a model that calls
(references) this model passes its scalar
inputs to this model by value.

Model Configuration Parameters: Model Referencing

Parameter

Description

“Minimize algebraic loop occurrences” on
page 15-27

Try to eliminate artificial algebraic loops
from a model that involve the current
referenced model

“Propagate all signal labels out of the
model” on page 15-29

Pass propagated signal names to output
signals of Model block.

“Propagate sizes of variable-size signals” on
page 15-33

Select how variable-size signals propagate
through referenced models.

“Model dependencies” on page 15-35

You can add user-created dependencies
to the set of known target dependencies
by using the Model dependencies
parameter.

Related Examples
. “Overview of Model Referencing”

. Model Dependencies

15-3

15 Model Referencing Parameters

Model Referencing Pane Overview

Specify the options for including other models in this model, this model in other models,
and for building simulation and code generation targets.

Configuration

Set the parameters displayed.

Tips

+ To open the Model Referencing pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Model Referencing.

* The Model Referencing pane allows you to specify options for:

* Including other models in this model.
Including the current model in other models.

* The option descriptions use the term this model to refer to the model that you are
configuring and the term referenced model to designate models referenced by this
model.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

T SR R

Related Examples

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-4

Rebuild

Rebuild

Description

Select the method used to determine when to rebuild simulation and Simulink Coder
targets for referenced models before updating, simulating, or generating code from this
model.

There are four rebuild options. Two options, Always and Never, either always

rebuild the model reference target or never rebuild the target, respectively. The

other two options, 1T any changes detected and IT any changes in known
dependencies detected, cause Simulink to check the model and its dependencies to
determine whether or not to rebuild the model reference target. As part of this checking,
Simulink:

+ Automatically identifies a set of “known” target dependencies that it examines for
changes.

* May compute the model’s structural checksum, which reflects changes to the model
that can affect simulation results.

For additional background information to help you determine which rebuild option
setting to use, see the “Definitions” and “Tips” sections.

Category: Model Referencing

Settings
Default: 1T any changes detected

Always

Always rebuild targets referenced by this model before simulating, updating, or
generating code from this model.

IT any changes detected

Rebuild a target for a referenced model if Simulink detects a change that could
affect simulation results. To do this, Simulink first looks for changes to the target
dependencies and to the model, and, if none are found, it then computes the
structural checksum of the model to check that the model reference target is up to
date.

If any changes in known dependencies detected

15-5

15 Model Referencing Parameters

Rebuild a target if Simulink detects a change in target dependencies or in both the
model and its structural checksum. If Simulink does not detect a change in target
dependencies or the model, it does not compute the structural checksum of the
model and does not rebuild the model reference target. You must list all user-created
dependencies in the Configuration Parameters > Model Referencing > Model
dependencies parameter.

Never

Never rebuild targets referenced by this model before simulating, updating, or
generating code from this model.

Definitions

Known target dependencies

Known target dependencies are files and data outside of model files that Simulink
examines for changes when checking to see if a model reference target is up to date.
Simulink automatically computes a set of known target dependencies. Simulink
examines the known target dependencies to determine whether they have changed,
which it can do quickly. Examples of known target dependencies are:

Changes to the model workspace, if its data source is a MAT-file or MATLAB file

* Enumerated type definitions

+ User-written S-functions and their TLC files

* Files specified in the Model dependencies on page 15-35 parameter

+ External files used by Stateflow, a MATLAB Function block, or a MATLAB
System block

Potential target dependencies

Potential dependencies are files and data outside of model files, as well as model
configuration settings, that Simulink examines for changes when checking to see if
a model reference target is up to date. Simulink automatically computes the set of
potential dependencies. Simulink examines the potential dependencies, which it can
do quickly. Examples of potential dependencies are:

* Changes to global variables
* Changes to targets of models referenced by this model

* The Configuration Parameters > Diagnostics > Data Validity > Signal
resolution parameter is set to either Explicit and warn implicitor
Explicit and implicit

15-6

Rebuild

Simulink examines each potential target dependency to determine whether the state
of that dependency is a trigger for causing a structural checksum check.

User-created dependencies

Although Simulink automatically examines every known target dependency, you can
have files that can impact the simulation results of your model that Simulink does
not automatically identify. Some examples of user-created dependencies are:

+ MATLAB files that contain code executed by callbacks
+ MAT-files that contain definitions for variables used by the model that are loaded
as part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by
using the Model dependencies parameter.

Structural checksum

As part of determining whether a model reference target is up to date, Simulink may
compute the structural checksum of a model, which reflects changes to the model
that can affect simulation results.

When Simulink computes the structural checksum, it loads and compiles the model.
To compile the model, Simulink must execute callbacks and access all variables that
the model uses. As a result, the structural checksum reflects changes to the model
that can affect simulation results, including changes in user-created dependencies,
regardless of whether you have specified those user-created dependencies in the
Model dependencies parameter.

For more information about the kinds of changes that affect the structural checksum,
see the Simulink.BlockDiagram.getChecksum documentation.

Tips

You do not need to have the same rebuild option setting for every model in a model
reference hierarchy. When you simulate, update, or generate code for a model, the
rebuild option setting for that model applies to all models that it references.

To improve rebuild detection speed and accuracy, use the Model dependencies on
page 15-35 parameter to specify user-created dependencies. If you use the 1T any
changes in known dependencies detected rebuild option, then specify all user-
created dependencies for your model in the Model dependencies on page 15-35
parameter.

15-7

15 Model Referencing Parameters

* Each rebuild option setting has benefits and limitations, depending on your rebuild
goal. The following table lists the options in the order of the thoroughness of rebuild
detection. For detailed information about how Simulink determines whether a model
reference target is out of date, see the Change Detection Processing table, which is
part of the next tip.

15-8

Rebuild

Benefits and Limitations of Each Option

Rebuild Godl

Rebuild Option Setting

Notes

Make all the model
reference targets up to
date.

Always

Requires the most
processing time.

Can trigger unnecessary
builds before simulating,
updating, or generating
code from a referenced
model.

Before you deploy a model,
use the Always setting.

Perform extensive
detection of changes
to dependencies of the
referenced models.

IT any changes
detected

Default.

Reduces the number of
rebuilds, compared to the
Always setting.

Detects changes in the
dependencies of the target,
as well as changes in the
structural checksum of the
referenced model.

The structural checksum
can detect changes that
occur in user-created
dependencies that are not
specified with the Model
dependencies on page
15-35 parameter.

Reduce time required for
rebuild detection.

IT any changes in
known dependencies
detected

Reduces the number of
rebuilds, compared to

the I¥ any changes
detected option. Ignores
cosmetic changes, such as
annotation changes, in the

15-9

15 Model Referencing Parameters

15-10

Rebuild Godl

Rebuild Option Setting

Notes

referenced model and its
libraries.

Subset of the checks
performed by the 1T any
changes detected option.

Invalid simulation results
may occur if you do not
specify with the Model
dependencies on page
15-35 parameter every
user-created dependency.

Avoid rebuilds during
model development.

Never

Least amount of processing
time, but requires that

you ensure that the model
reference targets are up to
date.

If you are certain that the
model reference targets
are up to date, you can use
this option to avoid target
dependency checking when
simulating, updating, or
generating code from a
model.

May lead to invalid results
if referenced model targets
are not in fact up to date.

To have Simulink check for
changes in known target
dependencies and report

if the model reference
targets may be out of date,
use the Never rebuild

Rebuild

Rebuild Godl

Rebuild Option Setting Notes

diagnostic on page
15-15 parameter.

To manually rebuild model
reference targets, use the
slbui Id function.

To detect whether to perform a rebuild, Simulink uses different processing for each
Rebuild setting. The following table summarizes the main types of change detection
checks that Simulink performs.

Change Detection Processing

Rebuild Option Setting

Simulink Change Detection Processing

Always

Does no change detection processing.

Always rebuilds targets referenced by this model before
simulating, updating, or generating code from this model.

IT any changes
detected

and

IT any changes in
known dependencies
detected

See the flow chart, below.

Never

Change detection processing determined by the Never
rebuild diagnostic on page 15-15 parameter.

The following flow chart describes the processing Simulink performs when you set
Rebuild to either I ¥ any changes detected or IT any changes in known
dependencies detected. The “Compare Checksum” boxes indicate that Simulink
detects whether the structural checksum has changed. If the structural checksum has
changed, then Simulink performs a rebuild.

15-11

15 Model Referencing Parameters

Known Target
Dependancy
Changed?

Rebuild

Model Files or
Libraries Changed?

If any changes
detected

What is the
Rebuild Setting?

Rebuild

If any changes

in known
dependencies
detected
NO
Compare
Checksum
v
Fotential YES Compare
Dependencies Trigger)———————® hacksum
Detected? o
NO
v
If any changes
What is the detected Comp
Rebuild Setting? S miar

If any changes
in known
dependencies
detected

15-12

Do not Rebuild

Rebuild

* The following examples illustrate differences between the I ¥ any changes
detected and IT any changes in known dependencies detected options.

If you change a MATLAB file that is executed as part of a callback script (or other
user-created dependency) that you have not listed in the Model dependencies
parameter:

+ 1T any changes detected — Causes a rebuild, because the change to the file
changes the structural checksum of the model.

+ IT any changes in known dependencies detected — Does not cause a
rebuild, because no known target dependency has changed.

If you move a block in a model:

IT any changes detected — Causes a rebuild, because the model has changed.

+ IFf any changes in known dependencies detected — Does not cause a
rebuild, because this change does not change the model’s structural checksum.

Dependency

Selecting Never enables the Never rebuild diagnostic parameter.

Command-Line Information

Parameter: UpdateModelReferenceTargets

Value: "Force” | "1fOutOfDateOrStructuralChange” | " I1TfOutOfDate” |
"AssumeUpToDate*

Default: " I fOutOfDateOrStructuralChange*

UpdateMode IReferenceTargets Value |Equivalent Rebuild Value

"Force~ Always

" 1fOutOfDateOrStructuralChange®™ |1f any changes detected

"1 fOutOfDate™ ITf any changes in known dependencies
detected

"AssumeUpToDate* Never

15-13

15 Model Referencing Parameters

15-14

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution IT any changes detected or Never
If you use the Never setting, then set the Never
rebuild diagnostic parameter to Error if
rebuild required.

See Also

Simulink.BlockDiagram.getChecksum

Related Examples
. Model Dependencies

“Model Configuration Parameters: Model Referencing” on page 15-2

Never rebuild diagnostic

Never rebuild diagnostic

Description

Select the diagnostic action that Simulink software should take if it detects a model
reference target that needs to be rebuilt.

Category: Model Referencing

Settings
Default: Error if rebuild required

none
Simulink takes no action.
Warn if rebuild required
Simulink displays a warning.
Error if rebuild required

Simulink terminates the simulation and displays an error message.
Tip

If you set the Rebuild parameter to Never and set the Never rebuild diagnostic
parameter to Error if rebuild requiredorWarn if rebuild required, then
Simulink:

+ Performs the same change detection processing as for the 1¥ any changes in
known dependencies detected rebuild option setting, except it does not compare
structural checksums

+ Issues an error or warning (depending on the Never rebuild diagnostic setting), if
it detects a change

* Never rebuilds the model reference target
Selecting None bypasses dependency checking, and thus enables faster updating,
simulation, and code generation. However, the None setting can cause models that are

not up to date to malfunction or generate incorrect results. For more information on the
dependency checking, see “Rebuild” on page 15-5.

15-15

15 Model Referencing Parameters

Dependency

This parameter is enabled only if you select Never in the Rebuild field.
Command-Line Information
Parameter: CheckModelReferenceTargetMessage

Value: "none® | "warning® | "error*
Default: "error*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Error if rebuild required

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-16

Enable parallel model reference builds

Enable parallel model reference builds

Description

Specify whether to use automatic parallel building of the model reference hierarchy
whenever possible.

Category: Model Referencing

Settings
Default: Off

|7On

Simulink software builds the model reference hierarchy in parallel whenever possible
(based on computing resources and the structure of the model reference hierarchy).

I off
Simulink never builds the model reference hierarchy in parallel.
Dependency

Selecting this option enables the MATLAB worker initialization for builds
parameter.

Tip

You only need to set Enable parallel model reference builds for the top model of the
model reference hierarchy to which it applies.

Command-Line Information

Parameter: EnableParal lelModelReferenceBuilds
Value: "on® | "off"

Default: "off"

15-17

15 Model Referencing Parameters

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Reduce Update Time for Referenced Models”
. “Reduce Build Time for Referenced Models” (Simulink Coder)

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-18

MATLAB worker initialization for builds

MATLAB worker initialization for builds

Description
Specify how to initialize MATLAB workers for parallel builds.

Category: Model Referencing

Settings
Default: None

None

Simulink software takes no action. Specify this value if the child models in the model
reference hierarchy do not rely on anything in the base workspace beyond what they
explicitly set up (for example, with a model load function).

Copy base workspace

Simulink attempts to copy the base workspace to each MATLAB worker. Specify this
value if you use a setup script to prepare the base workspace for all models to use.

Load top model

Simulink loads the top model on each MATLAB worker. Specify this value if the top
model in the model reference hierarchy handles all of the base workspace setup (for
example, with a model load function).

Limitation
For values other than None, limitations apply to global variables in the base workspace.

Global variables are not propagated across parallel workers and do not reflect changes
made by top and child model scripts.

Dependency

Selecting the option Enable parallel model reference builds enables this parameter.

Command-Line Information
Parameter: Paral leIModelReferenceMATLABWorkerlInit

15-19

15 Model Referencing Parameters

Value: "None®™ | "Copy Base Workspace® | "Load Top Model*
Default: "None*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Reduce Update Time for Referenced Models”
. “Reduce Build Time for Referenced Models” (Simulink Coder)

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-20

Enable strict scheduling checks for referenced export-function models

Enable strict scheduling checks for referenced export-function
models

Description
This parameter enables these checks for referenced export-function models:

Scheduling order consistency of function-call subsystems in the referenced model

Sample time consistency across the referenced model boundary

Category: Model Referencing

Settings
Default: On

¥ On
Simulink enforces strict checks on scheduling order and sample time consistency in
referenced export-function models.

I off

Simulink does not enforce strict checks on scheduling order and sample time
consistency in referenced export-function models.

Command-Line Information

Parameter: EnableRefExpFcnMdlSchedul ingChecks
Value: "on® | "off"

Default: "on*

Related Examples
“Execution Order for Function-Call Root-Level Inport Blocks”
“Scheduling Restrictions for Referenced Export-Function Models”

“Model Configuration Parameters: Model Referencing” on page 15-2

15-21

15 Model Referencing Parameters

Total number of instances allowed per top model

15-22

Description
Specify how many references to this model can occur in another model.

Category: Model Referencing

Settings
Default: Multiple

Zero

The model cannot be referenced. An error occurs if a reference to the model occurs in
another model.

One
The model can be referenced at most once in a model reference hierarchy. An error
occurs if more than one reference exists.

Multiple
The model can be referenced more than once in a hierarchy, provided that it contains

no constructs that preclude multiple reference. An error occurs if the model cannot be
multiply referenced, even if only one reference exists.

To use multiple instances of a referenced model in normal mode, use the Multiple
setting. For details, see “Simulate Models with Multiple Referenced Model
Instances”.

Command-Line Information

Parameter: ModelReferenceNumlnstancesAllowed
Value: "Zero® | "Single” | "Multi~

Default: "Multi*

Recommended Settings

Application Setting
Debugging No impact

Total number of instances allowed per top model

Application Setting

Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. Diagnosing Simulation Errors

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-23

15 Model Referencing Parameters

Pass fixed-size scalar root inputs by value for code generation

Description

Specify whether a model that calls (references) this model passes its scalar inputs to this
model by value.

Category: Model Referencing

Settings
Default: Off (GUI), "on" (command-line)

¥ On
A model that calls (references) this model passes scalar inputs to this model by value.

I off

The calling model passes the inputs by reference (it passes the addresses of the
inputs rather than the input values).

Tips
* This option is ignored in either of these two cases:

The C function prototype control is not the default.
+ The C++ encapsulation interface is not the default.

+ Passing root inputs by value allows this model to read its scalar inputs from register
or local memory, which is faster than reading the inputs from their original locations.

+ Enabling this parameter can result in the simulation behavior differing from
the generated code behavior under certain modeling semantics. If you use the
default setting of Enable all as errors for the Configuration Parameters
> Diagnostics > Connectivity > Context-dependent inputs parameter, then
Simulink reports cases where the modeling semantics may result in inconsistent
behaviors for simulation and for generated code. If the diagnostic identifies an
issue, latch the function-call subsystem inputs. For more information about latching
function-call subsystems, see “Context-dependent inputs” on page 8-26.

15-24

Pass fixed-size scalar root inputs by value for code generation

+ If the Context-dependent inputs diagnostic reports no issues for a model, consider
enabling the Pass fixed-size scalar root inputs by value for code generation
parameter, which usually generates more efficient code for such a model.

+ If you have a Simulink Coder license, selecting this option can affect reuse of code
generated for subsystems. See “Reusable Code and Referenced Models” (Simulink
Coder) for more information.

+ For SIM targets, a model that references this model passes inputs by reference,

regardless of how you set the Pass fixed-size scalar root inputs by value for
code generation parameter.

Command-Line Information

Parameter:Mode IReferencePassRootInputsByReference
Value: "on”" | "off"

Default: "on*

Note: The command-line values are reverse of the settings values. Therefore, "on” in the

command line corresponds to the description of “Off” in the settings section, and "off"
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

For the diagnostic action to take when the

software has to compute the input to a function-
call subsystem, see “Context-dependent inputs” on
page 8-26.

Related Examples
. “Function-Call Subsystems”
. “Reusable Code and Referenced Models” (Simulink Coder)

15-25

15 Model Referencing Parameters

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-26

Minimize algebraic loop occurrences

Minimize algebraic loop occurrences

Description

Try to eliminate artificial algebraic loops from a model that involve the current
referenced model

Category: Model Referencing

Settings
Default: Off

|7On

Simulink software tries to eliminate artificial algebraic loops from a model that
involve the current referenced model.

I off

Simulink software does not try to eliminate artificial algebraic loops from a model
that involve the current referenced model.

Tips

Enabling this parameter together with the Simulink Coder Single output/update
function parameter results in an error.

Command-Line Information

Parameter: Mode IReferenceMinAlgLoopOccurrences
Value: "on”" | "off"

Default: "off*"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

15-27

15 Model Referencing Parameters

15-28

Application Setting
Efficiency No impact
Safety precaution No recommendation

Related Examples

Model block

“Algebraic Loops”

Model Blocks and Direct Feedthrough
Diagnosing Simulation Errors

“Model Configuration Parameters: Model Referencing” on page 15-2

Propagate all signal labels out of the model

Propagate all signal labels out of the model

Description
Pass propagated signal names to output signals of Model block.

Category: Model Referencing

Settings
Default: On

¥ On
Simulink propagates signal names to output signals of the Model block.

I off

Simulink does not propagate signal names to output signals of the Model block.

Tips

+ By default, each instance of a referenced model propagates signal labels. Clear the
setting for any instance that you do not want to propagate signal labels.

+ The following models illustrate the behavior when you use the default setting of
the Propagate all signal labels out of the model parameter of enabled for the
referenced model. The output signal from the Model block Out2 port displays the
propagated signal name (chirp_sig), whose source is inside the referenced model.

15-29

15 Model Referencing Parameters

15-30

@ ex_sig_label_prop_referenced_model_config_param_on

. constEnt_sig

Constant
Chirp Signal Goto

Out2

Medel

2
o e

Out2

From
|i| ex_sig_label_prop_parent_config_param_on #
ex_sig_label_prop_referenced_meodel_config_param_cn
Outl f———— 1
< constant_sig=

_ GConstant_Cutput
Gain

< chirp_sige
Chirg_Output

Gain1

* The following models illustrate the behavior when you clear this parameter, if you
enable signal label propagation for every eligible signal. Inside the referenced model,
signal label propagation occurs as in any model. However, the output signal from the
Model block Out2 port displays empty brackets for the propagated signal label.

Propagate all signal labels out of the model

|i| ex_sig_label_prop_referenced_model_default

constEnt_sig @
Outl
Constant
A
chirp_sg "
‘Chirp Signal Goto

B
Cut2

From

|§| ex_sig_label_prop_parent_default ¥

ex_sig_label_prop_referenced_maodel_default

oM p———» : (1
< Constant s
Constant Output

Gain

IEE—
ovel
Chirp_Output

Gain1

Meodel

Command-Line Information

Parameter: PropagateSignallLabelsOutOfModel
Value: "on”" | "off"
Default: "on*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

15-31

15 Model Referencing Parameters

Application Setting

Safety precaution No recommendation

Related Examples
. Model block
. “Signal Label Propagation”

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-32

Propagate sizes of variable-size signals

Propagate sizes of variable-size signals

Description

Select how variable-size signals propagate through referenced models.

Category: Model Referencing

Settings

Default: Infer from blocks in model

Infer from blocks in model

Searches a referenced model and groups blocks into the following categories.

Category

Description

Example Blocks in This Category

1

Output signal size depends
on input signal values.

Switch or Enable Subsystem block whose
parameter Propagate sizes of variable-
size signals is set to During execution

States require resetting
when the input signal size
changes.

Unit Delay block in an Enabled
Subsystem whose parameter Propagate
sizes of variable-size signals is set to
Only when enabling

Output signal size depends
only on the input signal
size.

Gain block.

The search stops at the boundary of Enable, Function-Call, and Action subsystems
because these subsystems can specify when to propagate the size of a variable-size

signal.

Simulink sets the propagation of variable-size signals for a referenced model as

follows:

* One or more blocks in category 1, and all other blocks are in category 3, select
During execution.

* One or more blocks in category 2, and all another blocks are in category 3, select
Only when enabling.

15-33

15 Model Referencing Parameters

* Blocks in category 1 and 2, report an error.

+ All blocks in category 3 with a conditionally executed subsystem that is not an
Enable, Function-Call, or Action subsystem, report an error. Simulink, in this
case, cannot determine when to propagate sizes of variable-size signals.

+ All blocks in category 3 with only conditionally executed subsystems that are an
Enable, Function-Call, or Action subsystem, support both Only with enabling
and During execution.

Only when enabling

Propagates sizes of variable-size signals for the referenced model only when enabling
(at Enable method).

During execution

Propagates sizes of variable-size signals for the referenced model during execution (at
Outputs method).

Command-Line Information

Parameter: PropagateVarSize

Value: "Infer from blocks in model® | "Only when enabling®] "During
execution”®

Default: " Infer from blocks in model*®

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-34

Model dependencies

Model dependencies

Description

Although Simulink automatically examines every known target dependency, you can
have files that can impact the simulation results of your model that Simulink does not
automatically identify. Some examples of user-created dependencies are:

+ MATLAB files that contain code executed by callbacks

+ MAT-files that contain definitions for variables used by the model that are loaded as
part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by using
the Model dependencies parameter.

Simulink examines the files specified with the Model dependencies parameter when
determining whether the model reference target is up to date. If the Rebuild on page
15-5 parameter is set to:

* Always, then the listed files are not examined.

+ Either IT any changes detectedor ITf any changes in known
dependencies detected, then changes to listed files cause the model reference
target to rebuild.

* Never, and the Never rebuild diagnostic on page 15-15 parameter is set to either
Warn if rebuild requiredor Error if rebuild required, then changes to
listed files cause Simulink to report a warning or error.

Category: Model Referencing

Settings
Default: = -

+ Specify the dependencies as a cell array of character vectors, where each cell array
entry is one of the following:

+ File name — Simulink looks on the MATLAB path for a file with the given name.
If the file is not on the MATLAB path, then specify the path to the dependent file,
as described below.

15-35

15 Model Referencing Parameters

15-36

+ Path to the dependent file — The path can be relative or absolute, and must
include the file name.

* Folder — Simulink treats every file in that folder as a dependent file. Simulink
does not include files of subfolders of the folder you specify.

File names must include a file extensions (for example, .m or .mat)

File names and paths can include spaces.

You can use the following characters in the character vectors:
The token $MDL, as a prefix to a dependency to indicate that the path to the
dependency is relative to the location of this model file

* An asterisk (*), as a wild card

+ A percent sign (%), to comment out a line

An ellipsis (...), to continue a line

For example:

{"D:\Work\parameters.mat”, "$MDL\mdlvars.mat”,
"D:\Work\masks*.m"}

Tips

To improve rebuild detection speed and accuracy, use the Model dependencies
parameter to specify model dependencies other than those that Simulink checks
automatically as part of the its rebuild detection. For details, see the Rebuild on
page 15-5 parameter documentation.

If the Rebuild setting is I ¥ any changes in known dependencies detected,
to prevent invalid simulation results, add every user-created dependency (for
example, MATLAB code files or MAT-files).

Using the Simulink Manifest Tools can help you to identify model dependencies. For
more information, see “Analyze Model Dependencies”.

If Simulink cannot find a specified dependent file when you update or simulate a
model that references this model, Simulink displays a warning.

The dependencies automatically include the model and linked library files, so you do
not need to specify those files with the Model dependencies parameter.

Command-Line Information
Parameter: ModelDependencies

Model dependencies

Type: character vector
Value: any valid value
Default: " *

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. “Rebuild” on page 15-5

. “Model Configuration Parameters: Model Referencing” on page 15-2

15-37

Simulation Target Parameters

16 Ssimulation Target Parameters

Model Configuration Parameters: Simulation Target

16-2

The Simulation Target category includes parameters for configuring the simulation
target for a model that contains MATLAB Function blocks, Stateflow charts, or Truth

Table blocks.

On the Configuration Parameters dialog box, the following configuration parameters
are on the Commonly Used tab on the Simulation Target pane, or on the All
Parameters tab in the Simulation Target category.

Parameter

Description

“Parse custom code symbols” on page
16-5

Specify whether or not to parse the custom
code and report unresolved symbols in a
model. This setting applies to all C charts
in the model, including library link charts.

“Source file” on page 16-7

Enter code lines to appear near the top of a
generated source code file.

“Header file” on page 16-8

Enter code lines to appear near the top of a
generated header file.

“Initialize function” on page 16-10

Enter code statements that execute once at
the start of simulation.

“Terminate function” on page 16-12

Enter code statements that execute at the
end of simulation.

“Include directories” on page 16-14

Specify a list of folder paths that contain
files you include in the compiled target.

“Source files” on page 16-16

Specify a list of source files to compile and
link into the target.

“Libraries” on page 16-18

Specify a list of static libraries that contain
custom object code to link into the target.

“Reserved names” on page 16-20

Enter the names of variables or functions
in the generated code that match the
names of variables or functions specified
in custom code for a model that contains
MATLAB Function blocks, Stateflow
charts, or Truth Table blocks.

Model Configuration Parameters: Simulation Target

Parameter Description
“Defines” on page 16-22 Specify preprocessor macro definitions to
be added to the compiler command line.

Related Examples
. “Speed Up Simulation” (Stateflow)

. “Model Configuration Parameters: Advanced Parameters” on page 2-2

16-3

16 Ssimulation Target Parameters

Simulation Target: General Tab Overview

16-4

Configure the simulation target for a model that contains MATLAB Function blocks,
Stateflow charts, Truth Table blocks, or State Transition Table blocks.

Configuration
Set the parameters that appear.
Tip

To open the Simulation Target pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Simulation Target.

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

—

COET oy —T

Related Examples

. “Model Configuration Parameters: Simulation Target” on page 16-2

Parse custom code symbols

Parse custom code symbols

Description

Specify whether or not to parse the custom code and report unresolved symbols in a
model. This setting applies to all C charts in the model, including library link charts.

Category: Simulation Target

Settings
Default: On

Y| On

Enables parsing of custom code to report unresolved symbols in C charts of your
model.

Off

Disables parsing of custom code.

This option only applies to C charts, not charts that use MATLAB as the action language.

Command-Line Information
Parameter: SimParseCustomCode
Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

16-5

16 Ssimulation Target Parameters

Related Examples
. Including Custom C Code (Stateflow)
. Resolving Symbols in Stateflow Charts (Stateflow)

“Model Configuration Parameters: Simulation Target” on page 16-2

16-6

Source file

Source file

Description
Enter code lines to appear near the top of a generated source code file.

Category: Simulation Target

Settings
Default: "'

Code lines appear near the top of the generated model . c source file, outside of any
function.

Command-Line Information
Parameter: SimCustomSourceCode
Type: character vector

Value: any C code
Default: " *

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. Including Custom C Code (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 16-2

16-7

16 Ssimulation Target Parameters

Header file

16-8

Description
Enter code lines to appear near the top of a generated header file.

Category: Simulation Target

Settings
Default: '’

Code lines appear near the top of the generated model . h header file.

Tips

* When you include a custom header file, enclose the file name in double quotes. For
example, #include "sample_header.h" is a valid declaration for a custom header
file.

* You can include extern declarations of variables or functions.

Command-Line Information
Parameter: SimCustomHeaderCode
Type: character vector

Value: any C code

Default: " -

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation

Header file

Related Examples
. Including Custom C Code (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 16-2

16-9

16 Ssimulation Target Parameters

Initialize function

16-10

Description
Enter code statements that execute once at the start of simulation.

Category: Simulation Target

Settings

Default: "'

Code appears inside the model's initialize function in the model . c file.
Tip

+ Use this code to invoke functions that allocate memory or to perform other
initializations of your custom code.

Command-Line Information
Parameter: SimCustomlnitializer
Type: character vector

Value: any C code

Default: "~

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. Including Custom C Code (Stateflow)

Initialize function

“Model Configuration Parameters: Simulation Target” on page 16-2

16-11

16 Ssimulation Target Parameters

Terminate function

Description
Enter code statements that execute at the end of simulation.

Category: Simulation Target

Settings

Default: "'

Code appears inside the model's terminate function in the model . c file.
Tip

+ Use this code to invoke functions that free memory allocated by the custom code or to
perform other cleanup tasks.

Command-Line Information
Parameter: SimCustomTerminator
Type: character vector

Value: any C code

Default: " "

Recommended Settings

Application Setting

Debugging No recommendation
Traceability No recommendation
Efficiency No recommendation
Safety precaution No recommendation

Related Examples
. Including Custom C Code (Stateflow)

16-12

Terminate function

“Model Configuration Parameters: Simulation Target” on page 16-2

16-13

16 Ssimulation Target Parameters

Include directories

Description
Specify a list of folder paths that contain files you include in the compiled target.

Category: Simulation Target

Settings
Default:" *
Enter a space-separated list of folder paths.

+ Specify absolute or relative paths to the directories.

* Relative paths must be relative to the folder containing your model files, not relative
to the build folder.

* The order in which you specify the directories is the order in which they are searched
for header, source, and library files.

Note: If you specify a Windows path containing one or more spaces, you must enclose
the character vector in double quotes. For example, the second and third paths in the
Include directories entry below must be double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter SimUser IncludeDirs, each path
containing spaces must be separately double-quoted within the single-quoted third
argument, for example,

>> set_param("mymodel ™, "SimUserlIncludeDirs”,
"C:\Project "C:\Custom Files" "C:\Library Files"")

Command-Line Information
Parameter: SimUserIncludeDirs
Type: character vector

Value: any folder path

Default: " "

16-14

Include directories

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact
No impact
No impact

No recommendation

. Including Custom C Code (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 16-2

16-15

16 Ssimulation Target Parameters

Source files

16-16

Description
Specify a list of source files to compile and link into the target.

Category: Simulation Target

Settings
Default:" "

You can separate source files with a comma, a space, or a new line.

Limitation

This parameter does not support Windows file names that contain embedded spaces.
Tip

* The file name is sufficient if the file is in the current MATLAB folder or in one of the
include directories.

Command-Line Information
Parameter: SimUserSources
Type: character vector

Value: any file name

Default: " "

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Source files

Related Examples
. Including Custom C Code (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 16-2

16-17

16 Ssimulation Target Parameters

Libraries

Description
Specify a list of static libraries that contain custom object code to link into the target.

Category: Simulation Target

Settings
Default:" "

Enter a space-separated list of library files.

Limitation

This parameter does not support Windows file names that contain embedded spaces.
Tip

* The file name is sufficient if the file is in the current MATLAB folder or in one of the
include directories.

Command-Line Information
Parameter: SimUserLibraries
Type: character vector

Value: any library file name
Default: = -

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

16-18

Libraries

Related Examples
. Including Custom C Code (Stateflow)

. “Model Configuration Parameters: Simulation Target” on page 16-2

16-19

16 Ssimulation Target Parameters

Reserved names

16-20

Description

Enter the names of variables or functions in the generated code that match the names
of variables or functions specified in custom code for a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Category: Simulation Target

Settings
Default: {}

This action changes the names of variables or functions in the generated code to avoid
name conflicts with identifiers in custom code. Reserved names must be shorter than 256
characters.

Tips
+ Start each reserved name with a letter or an underscore to prevent error messages.
* Each reserved name must contain only letters, numbers, or underscores.
* Separate the reserved names using commas or spaces.
* You can also specify reserved names by using the command line:
config _param_object.set_param("SimReservedNameArray®, {"abc","xyz"})

where config_param_object is the object handle to the model settings in the
Configuration Parameters dialog box.

Command-Line Information
Parameter: SimReservedNameArray
Type: cell array of character vectors

Value: any reserved names shorter than 256 characters
Default: {}

Reserved names

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples

Setting

No impact
No impact
No impact

No recommendation

“Model Configuration Parameters: Simulation Target” on page 16-2

16-21

16 Ssimulation Target Parameters

Defines

16-22

Description
Specify preprocessor macro definitions to be added to the compiler command line.

Category: Simulation Target

Settings
Default: =~

Enter a list of macro definitions for the compiler command line. Specify the parameters
with a space-separated list of macro definitions. If a makefile is generated, these macro
definitions are added to the compiler command line in the makefile. The list can include
simple definitions (for example, —-DDEF1), definitions with a value (for example, -
DDEF2=1), and definitions with a space in the value (for example, -DDEF3=""my value").
Definitions can omit the -D (for example, ~-DF0O0=1 and FOO=1 are equivalent). If the
toolchain uses a different flag for definitions, the code generator overrides the -D and
uses the appropriate flag for the toolchain.

Command-Line Information
Parameter: SimUserDefines
Type: character vector

Value: preprocessor macro definition
Default: " -

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Defines

Related Examples

. “Integrate External Code by Using Model Configuration Parameters” (Simulink
Coder)

. “Model Configuration Parameters: Simulation Target” on page 16-2

16-23

Solver Parameters

] 7 Solver Parameters

Solver Pane

17-2

The Solver category includes parameters for configuring a solver for a model. A solver
computes a dynamic system's states at successive time steps over a specified time span.
You also use these parameters to specify the simulation start and stop times.

On the Configuration Parameters dialog box, the following configuration parameters are
on the Commonly Used tab on the Solver pane, or on the All Parameters tab in the

Solver category.

Parameter

Description

“Start time” on page 17-8

Specify the start time for the simulation or
generated code as a double-precision value,
scaled to seconds.

“Stop time” on page 17-9

Specify the stop time for the simulation or
generated code as a double-precision value,
scaled to seconds.

“Type” on page 17-10

Select the type of solver you want to use to
simulate your model.

“Solver” on page 17-12

Select the solver you want to use to
compute the states of the model during
simulation or code generation.

“Max step size” on page 17-19

Specify the largest time step that the solver
can take.

“Initial step size” on page 17-21

Specify the size of the first time step that
the solver takes.

“Min step size” on page 17-23

Specify the smallest time step that the
solver can take.

“Relative tolerance” on page 17-25

Specify the largest acceptable solver error,
relative to the size of each state during
each time step. If the relative error exceeds
this tolerance, the solver reduces the time
step size.

“Absolute tolerance” on page 17-27

Specify the largest acceptable solver
error, as the value of the measured state
approaches zero. If the absolute error

Solver Pane

Parameter

Description

exceeds this tolerance, the solver reduces
the time step size.

“Shape preservation” on page 17-30

At each time step use derivative
information to improve integration
accuracy.

“Maximum order” on page 17-32

Select the order of the numerical
differentiation formulas (NDFs) used in the
odel5s solver.

“Solver reset method” on page 17-34

Select how the solver behaves during
a reset, such as when it detects a zero
crossing.

“Number of consecutive min steps” on page
17-36

Specify the maximum number of
consecutive minimum step size violations
allowed during simulation.

“Solver Jacobian Method” on page 17-38

Specify the method to compute the
Jacobian matrix for an implicit solver.

“Treat each discrete rate as a separate
task” on page 17-40

Specify whether Simulink executes blocks
with periodic sample times individually or
in groups.

“Automatically handle rate transition for
data transfer” on page 17-42

Specify whether Simulink software
automatically inserts hidden Rate
Transition blocks between blocks that
have different sample rates to ensure: the
integrity of data transfers between tasks;
and optional determinism of data transfers
for periodic tasks.

“Deterministic data transfer” on page
17-44

Control whether the Rate Transition block
parameter Ensure deterministic data
transfer (maximum delay) is set for
auto-inserted Rate Transition blocks.

“Higher priority value indicates higher task
priority” on page 17-46

Specify whether the real-time system
targeted by the model assigns higher or
lower priority values to higher priority
tasks when implementing asynchronous
data transfers.

17-3

] 7 Solver Parameters

17-4

Parameter

Description

“Zero-crossing control” on page 17-48

Enables zero-crossing detection during
variable-step simulation of the model. For
most models, this speeds up simulation
by enabling the solver to take larger time
steps.

“Time tolerance” on page 17-50

Specify a tolerance factor that controls how
closely zero-crossing events must occur to
be considered consecutive.

“Number of consecutive zero crossings” on
page 17-53

Specify the number of consecutive zero
crossings that can occur before Simulink
software displays a warning or an error.

“Algorithm” on page 17-55

Specifies the algorithm to detect zero
crossings when a variable-step solver is
used.

“Signal threshold” on page 17-57

Specifies the deadband region used during
the detection of zero crossings. Signals
falling within this region are defined as
having crossed through zero.

“Periodic sample time constraint” on page
17-59

Select constraints on the sample times
defined by this model. If the model does
not satisfy the specified constraints during
simulation, Simulink software displays an
error message.

“Fixed-step size (fundamental sample
time)” on page 17-62

Specify the step size used by the selected
fixed-step solver.

“Sample time properties” on page 17-64

Specify and assign priorities to the sample
times that this model implements.

“Extrapolation order” on page 17-67

Select the extrapolation order used by the
odel4x solver to compute a model's states
at the next time step from the states at the
current time step.

Solver Pane

Parameter Description
“Number Newton's iterations” on page Specify the number of Newton's method
17-69 iterations used by the odel4x solver to

compute a model's states at the next time
step from the states at the current time

step.
“Allow tasks to execute concurrently on Enable concurrent tasking behavior for
target” on page 17-71 model.

Related Examples
. “Specify Simulation Start and Stop Time”
. “About Solvers”

17-5

] 7 Solver Parameters

Solver Overview

17-6

Specify the simulation start and stop time, and the solver configuration for the
simulation. Use the Solver pane to set up a solver for a model's active configuration set.

A solver computes a dynamic system's states at successive time steps over a specified
time span, using information provided by the model. Once the model compiles, the Solver
Information tooltip displays

* Compiled solver name

+ Step size (Max step size or Fixed step size)

Once the model compiles, the status bar displays the solver used for compiling and a
carat (*) when:

* Simulink selects a different solver during compilation.

* You set the step size to auto. The Solver Information tooltip displays the step size
that Simulink calculated.

Configuration

1 Select a solver type from the Type list.

2 Select a solver from the Solver list.

3 Set the parameters displayed for the selected type and solver combination.
4 Apply the changes.

Tips

+ To open the Solver pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Solver.

* Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

+ Fixed-step solver type is required for code generation, unless you use an S-function
or RSim target.

+ Variable-step solver type can significantly shorten the time required to simulate
models in which states change rapidly or which contain discontinuities.

Solver Overview

To get help on an option

1 Right-click the option text label.

2 From the context menu, select What's This.

Coefi |

- JEEITN

Related Examples

. “Solver Pane” on page 17-2

17-7

] 7 Solver Parameters

Start time

17-8

Description

Specify the start time for the simulation or generated code as a double-precision value,
scaled to seconds.

Category: Solver

Settings
Default: 0.0

+ A start time must be less than or equal to the stop time. For example, use a nonzero
start time to delay the start of a simulation while running an initialization script.

* The values of block parameters with initial conditions must match the initial
condition settings at the specified start time.

* Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

Command-Line Information

Parameter: StartTime
Type: character vector
Value: any valid value
Default: "0.0"

Related Examples
. “Specify Simulation Start and Stop Time”

. “Solver Pane” on page 17-2

Stop time

Stop time

Description

Specify the stop time for the simulation or generated code as a double-precision value,
scaled to seconds.

Category: Solver

Settings
Default: 10

+ Stop time must be greater than or equal to the start time.

+ Specify inT to run a simulation or generated program until you explicitly pause or
stop it.

+ If the stop time is the same as the start time, the simulation or generated program
runs for one step.

* Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

+ If your model includes blocks that depend on absolute time and you are creating a
design that runs indefinitely, see “Blocks That Depend on Absolute Time”.

Command-Line Information

Parameter: StopTime
Type: character vector
Value: any valid value
Default: "10.0"

Related Examples

. “Blocks That Depend on Absolute Time”

. “Use Blocks to Stop or Pause a Simulation”
. “Specify Simulation Start and Stop Time”

. “Solver Pane” on page 17-2

17-9

] 7 Solver Parameters

Type

17-10

Description
Select the type of solver you want to use to simulate your model.

Category: Solver
Settings

Default: Variable-step

Variable-step

Step size varies from step to step, depending on model dynamics. A variable-step
solver:

* Reduces step size when model states change rapidly, to maintain accuracy.

+ Increases step size when model states change slowly, to avoid unnecessary steps.

Variable-step is recommended for models in which states change rapidly or that
contain discontinuities. In these cases, a variable-step solver requires fewer time
steps than a fixed-step solver to achieve a comparable level of accuracy. This can
significantly shorten simulation time.

Fixed-step

Step size remains constant throughout the simulation. You require a fixed-step solver
for code generation, unless you use an S-function or RSim target. Typically, lower
order solvers are computationally less expensive than higher order solvers. However,
they also provide less accuracy.

Note: The solver computes the next time as the sum of the current time and the step
size.

Dependencies

Selecting Variable-step enables the following parameters:

Solver

Type

+ Max step size

* Min step size

+ Initial step size

* Relative tolerance

* Absolute tolerance

* Shape preservation

+ Initial step size

+ Number of consecutive min steps
+ Zero-crossing control

* Time tolerance

* Algorithm
Selecting Fixed-step enables the following parameters:

* Solver

+ Periodic sample time constraint

* Fixed-step size (fundamental sample time)

+ Treat each discrete rate as a separate task

* Higher priority value indicates higher task priority

+ Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SolverType
Value: "Variable-step” | "Fixed-step”
Default: "Variable-step”

Related Examples
. “Choose a Solver”
. “Purely Discrete Systems”

. “Solver Pane” on page 17-2

17-11

] 7 Solver Parameters

Solver

17-12

Description

Select the solver you want to use to compute the states of the model during simulation or
code generation.

Category: Solver

Settings
Select from these types:

+ “Fixed-step Solvers” on page 17-12
+ “Variable-step Solvers” on page 17-14

The default setting for new models is VariableStepAuto.
Fixed-step Solvers
Default: FixedStepAuto

auto

Computes the state of the model using a fixed-step solver that auto solver selects.

At the time the model compiles, auto changes to a fixed-step solver that auto solver
selects based on the model dynamics. Click on the solver hyperlink in the lower right
corner of the model to accept or change this selection.

ode3 (Bogacki-Shampine)

Computes the state of the model at the next time step as an explicit function of the
current value of the state and the state derivatives, using the Bogacki-Shampine
Formula integration technique to compute the state derivatives. In the following
example, X is the state, DX 1s the state derivative, and h is the step size:

X(n+1) = X(n) + h * DX(n)
Discrete (no continuous states)

Computes the time of the next time step by adding a fixed step size to the current
time.

Solver

Use this solver for models with no states or discrete states only, using a fixed step
size. Relies on the model's blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on the size of
the steps taken by the simulation: the smaller the step size, the more accurate the
results but the longer the simulation takes.

Note: The fixed-step discrete solver cannot be used to simulate models that have
continuous states.

ode8 (Dormand-Prince RK8(7))

Uses the eighth-order Dormand-Prince formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives approximated at intermediate points.

ode5 (Dormand-Prince)

Uses the fifth-order Dormand-Prince formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives approximated at intermediate points.

ode4 (Runge-Kutta)

Uses the fourth-order Runge-Kutta (RK4) formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives.

ode2 (Heun)

Uses the Heun integration method to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives.

odel (Euler)

Uses the Euler integration method to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives. This
solver requires fewer computations than a higher order solver. However, it provides
comparatively less accuracy.

odeldx (extrapolation)

Uses a combination of Newton's method and extrapolation from the current value to
compute the model's state at the next time step, as an implicit function of the state
and the state derivative at the next time step. In the following example, X is the
state, DX is the state derivative, and h is the step size:

17-13

] 7 Solver Parameters

17-14

X(n+1) - X(n) - h * DX(n+1) = 0

This solver requires more computation per step than an explicit solver, but is more
accurate for a given step size.

Variable-step Solvers
Default: VariableStepAuto

auto

Computes the state of the model using a variable-step solver that auto solver selects.
At the time the model compiles, auto changes to a variable-step solver that auto
solver selects based on the model dynamics. Click on the solver hyperlink in the
lower right corner of the model to accept or change this selection.

ode45 (Dormand-Prince)

Computes the model's state at the next time step using an explicit Runge-Kutta (4,5)
formula (the Dormand-Prince pair) for numerical integration.

ode45 is a one-step solver, and therefore only needs the solution at the preceding
time point.
Use ode45 as a first try for most problems.

Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies depending on
the rate of change of the model's states.

Use this solver for models with no states or discrete states only, using a variable step
size.

ode23 (Bogacki-Shampine)

Computes the model's state at the next time step using an explicit Runge-Kutta (2,3)
formula (the Bogacki-Shampine pair) for numerical integration.

ode23 is a one-step solver, and therefore only needs the solution at the preceding
time point.

ode23 is more efficient than ode45 at crude tolerances and in the presence of mild
stiffness.

odell3 (Adams)

Solver

Computes the model's state at the next time step using a variable-order Adams-
Bashforth-Moulton PECE numerical integration technique.

o0del13 is a multistep solver, and thus generally needs the solutions at several
preceding time points to compute the current solution.

0del13 can be more efficient than ode45 at stringent tolerances.
odel5s (stiff/NDF)

Computes the model's state at the next time step using variable-order numerical
differentiation formulas (NDFs). These are related to, but more efficient than the
backward differentiation formulas (BDF's), also known as Gear's method.

odel5s is a multistep solver, and thus generally needs the solutions at several
preceding time points to compute the current solution.

odel5s is efficient for stiff problems. Try this solver if ode45 fails or is inefficient.
ode23s (stiff/Mod. Rosenbrock)

Computes the model's state at the next time step using a modified Rosenbrock
formula of order 2.

ode23s is a one-step solver, and therefore only needs the solution at the preceding
time point.

ode23s is more efficient than odel5s at crude tolerances, and can solve stiff
problems for which odel15s is ineffective.

ode23t (Mod. stiff/Trapezoidal)

Computes the model's state at the next time step using an implementation of the
trapezoidal rule with a “free” interpolant.

ode23t is a one-step solver, and therefore only needs the solution at the preceding
time point.

Use ode23t if the problem is only moderately stiff and you need a solution with no
numerical damping.

ode23tb (stiff/TR-BDF2)

Computes the model's state at the next time step using a multistep implementation
of TR-BDF2, an implicit Runge-Kutta formula with a trapezoidal rule first stage,
and a second stage consisting of a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both stages.

17-15

] 7 Solver Parameters

17-16

ode23tb is more efficient than odel5s at crude tolerances, and can solve stiff
problems for which odel15s is ineffective.

Tips

+ Identifying the optimal solver for a model requires experimentation. For an in-depth
discussion, see “About Solvers”.

* The optimal solver balances acceptable accuracy with the shortest simulation time.

+ Simulink software uses a discrete solver for any model with no states or discrete
states only, even if you specify a continuous solver.

+ A smaller step size increases accuracy, but also increases simulation time.
* The degree of computational complexity increases for oden, as n increases.

* As computational complexity increases, the accuracy of the results also increases.

Dependencies

Selecting the odel (Euler), ode2 (Huen), ode 3 (Bogacki-Shampine), ode4
(Runge-Kutta), ode 5 (Dormand-Prince), or Discrete (no continuous
states) fixed-step solvers enables the following parameters:

* Fixed-step size (fundamental sample time)

+ Periodic sample time constraint

+ Treat each discrete rate as a separate task

+ Automatically handle rate transition for data transfers

* Higher priority value indicates higher task priority
Selecting odel4x (extrapolation) enables the following parameters:

+ Fixed-step size (fundamental sample time)

+ Extrapolation order

* Number Newton's iterations

+ Periodic sample time constraint

+ Treat each discrete rate as a separate task

* Automatically handle rate transition for data transfers

* Higher priority value indicates higher task priority

Solver

Selecting the Discrete (no continuous states) variable-step solver enables the
following parameters:

Max step size

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Number of consecutive zero crossings

Algorithm

Selecting ode45 (Dormand-Prince), ode23 (Bogacki-Shampine), odel13
(Adams), or ode23s (stiff/Mod. Rosenbrock) enables the following parameters:

Max step size

Min step size

Initial step size

Relative tolerance

Absolute tolerance

Shape preservation

Number of consecutive min steps

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Number of consecutive zero crossings

Algorithm

Selecting odel5s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or ode23tb
(stiff/TR-BDF2) enables the following parameters:

Max step size
Min step size

Initial step size

17-17

] 7 Solver Parameters

* Solver reset method

+ Number of consecutive min steps

* Relative tolerance

* Absolute tolerance

+ Shape preservation

* Maximum order

* Automatically handle rate transition for data transfers
* Higher priority value indicates higher task priority
+ Zero-crossing control

* Time tolerance

* Number of consecutive zero crossings

+ Algorithm

Command-Line Information

Parameter: Solver

Value: "VariableStepAuto®™ | "VariableStepDiscrete® | "ode45" |
"ode23" | "odell3" | "odel5s" | "ode23s" | "ode23t" | "ode23tb" |
"FixedStepAuto™ | "FixedStepDiscrete™ |"ode8"] "ode5" | "ode4" |
"ode3" | "ode2® | "odel® | "odeldx"

Default: "ode45*"

Related Examples

. “Solvers”
. “About Solvers”
. “Purely Discrete Systems”

. “Solver Pane” on page 17-2

17-18

Max step size

Max step size

Description

Specify the largest time step that the solver can take.

Category: Solver

Settings

Default: auto

For the discrete solver, the default value (auto) is the model's shortest sample time.

For continuous solvers, the default value (auto) is determined from the start and stop
times. If the stop time equals the start time or is inFf, Simulink chooses 0.2 seconds
as the maximum step size. Otherwise, it sets the maximum step size to

A _ tstop ~Lstart

max 5 O

For Sine and Signal Generator source blocks, Simulink calculates the max step size
using this heuristic:

h — min tstop_t,start l 1
max 50 '\ 3)| Freq,,,

where Freq,,,. is the maximum frequency (Hz) of these blocks in the model.

Tips

Generally, the default maximum step size is sufficient. If you are concerned about the
solver missing significant behavior, change the parameter to prevent the solver from
taking too large a step.

Max step size determines the step size of the variable-step solver.
If the time span of the simulation is very long, the default step size might be too large
for the solver to find the solution.

17-19

] 7 Solver Parameters

+ If your model contains periodic or nearly periodic behavior and you know the period,
set the maximum step size to some fraction (such as 1/4) of that period.

+ In general, for more output points, change the refine factor, not the maximum step
size.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: MaxStep

Type: character vector

Value: any valid value

Default: "auto”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Purely Discrete Systems”

. “Solver Pane” on page 17-2

17-20

Initial step size

Initial step size

Description
Specify the size of the first time step that the solver takes.

Category: Solver

Settings
Default: auto

By default, the solver selects an initial step size by examining the derivatives of the
states at the start time.

Tips

* Be careful when increasing the initial step size. If the first step size is too large, the
solver might step over important behavior.

+ The initial step size parameter is a suggested first step size. The solver tries this step
size but reduces it if error criteria are not satisfied.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: InitialStep
Type: character vector

Value: any valid value

Default: "auto*®

Recommended Settings

Application Setting
Debugging No impact

17-21

] 7 Solver Parameters

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Purely Discrete Systems”
. “Improve Simulation Performance Using Performance Advisor”

. “Solver Pane” on page 17-2

17-22

Min step size

Min step size

Description

Specify the smallest time step that the solver can take.

Category: Solver

Settings

Default: auto

The default value (auto) sets an unlimited number of warnings and a minimum step
size on the order of machine precision.

You can specify either a real number greater than zero, or a two-element vector
for which the first element is the minimum step size and the second element is the
maximum number of minimum step size warnings before an error was issued.

Tips

If the solver takes a smaller step to meet error tolerances, it issues a warning
indicating the current effective relative tolerance.

Setting the second element to zero results in an error the first time the solver must
take a step smaller than the specified minimum. This is equivalent to changing the
Min step size violation diagnostic to error on the Diagnostics pane (see “Min
step size violation” on page 12-11).

Setting the second element to -1 results in an unlimited number of warnings. This is
also the default if the input is a scalar.

Min step size determines the step size of the variable step ODE solver. The size is
limited by the smallest discrete sample time in the model.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: MinStep

17-23

] 7 Solver Parameters

17-24

Type: character vector
Value: any valid value
Default: "auto*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
Related Examples

. “Purely Discrete Systems”

. “Min step size violation” on page 12-11

. “Solver Pane” on page 17-2

Relative tolerance

Relative tolerance

Description

Specify the largest acceptable solver error, relative to the size of each state during each
time step. If the relative error exceeds this tolerance, the solver reduces the time step
size.

Category: Solver

Settings
Default: 1e-3

+ Setting the relative tolerance to auto is actually the default value of 1e-3.
+ The relative tolerance is a percentage of the state's value.

* The default value (1e-3) means that the computed state is accurate to within 0.1%.

Tips

* The acceptable error at each time step is a function of both the Relative tolerance
and the Absolute tolerance. For more information about how these settings work
together, see “Error Tolerances for Variable-Step Solvers”.

* During each time step, the solver computes the state values at the end of the step and
also determines the local error — the estimated error of these state values. If the error
is greater than the acceptable error for any state, the solver reduces the step size and
tries again.

* The default relative tolerance value is sufficient for most applications. Decreasing the
relative tolerance value can slow down the simulation.

* To check the accuracy of a simulation after you run it, you can reduce the relative
tolerance to le-4 and run it again. If the results of the two simulations are not
significantly different, you can feel confident that the solution has converged.

Dependencies

This parameter is enabled only if you set:

17-25

] 7 Solver Parameters

* Solver Type to Variable-step.

* Solver to a continuous variable-step solver.

This parameter works along with Absolute tolerance to determine the acceptable error
at each time step. For more information about how these settings work together, see
“Error Tolerances for Variable-Step Solvers”.

Command-Line Information
Parameter: RelTol
Type: character vector

Value: any valid value
Default: "1e-3*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Error Tolerances for Variable-Step Solvers”
. “Improve Simulation Performance Using Performance Advisor”

. “Solver Pane” on page 17-2

17-26

Absolute tolerance

Absolute tolerance

Description

Specify the largest acceptable solver error, as the value of the measured state approaches
zero. If the absolute error exceeds this tolerance, the solver reduces the time step size.

Category: Solver

Settings

Default: auto

The default value (auto) initially sets the absolute tolerance for each state to le-6.
As the simulation progresses, the absolute tolerance for each state is reset to the
maximum value that the state has thus far assumed times the relative tolerance for
that state.

For example, if a state goes from 0 to 1 and the Relative tolerance is 1le-3, then by
the end of the simulation, the Absolute tolerance is set to 1e-3.

If the computed setting is not suitable, you can determine an appropriate setting
yourself.

Tips

The acceptable error at each time step is a function of both the Relative tolerance
and the Absolute tolerance. For more information about how these settings work
together, see “Error Tolerances for Variable-Step Solvers”.

The Integrator, Second-Order Integrator, Variable Transport Delay, Transfer Fen,
State-Space, and Zero-Pole blocks allow you to specify absolute tolerance values

for solving the model states that they compute or that determine their output. The
absolute tolerance values that you specify in these blocks override the global setting
in the Configuration Parameters dialog box.

You might want to override the Absolute tolerance setting using blocks if the
global setting does not provide sufficient error control for all of your model states, for
example, if they vary widely in magnitude.

If you set the Absolute tolerance too low, the solver might take too many steps
around near-zero state values, and thus slow the simulation.

17-27

] 7 Solver Parameters

17-28

* To check the accuracy of a simulation after you run it, you can reduce the absolute
tolerance and run it again. If the results of the two simulations are not significantly
different, you can feel confident that the solution has converged.

+ If your simulation results do not seem accurate, and your model has states whose
values approach zero, the Absolute tolerance may be too large. Reduce the
Absolute tolerance to force the simulation to take more steps around areas of near-
zero state values.

Dependencies
This parameter is enabled only if you set:

* Solver Type to Variable-step.

* Solver to a continuous variable-step solver.

This parameter works along with Relative tolerance to determine the acceptable error
at each time step. For more information about how these settings work together, see
“Error Tolerances for Variable-Step Solvers”.

Command-Line Information for Configuration Parameters
Parameter: AbsTol

Type: character vector | numeric value

Value: "auto” | positive real scalar

Default: "auto*®

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Error Tolerances for Variable-Step Solvers”

. “Improve Simulation Performance Using Performance Advisor”

Absolute tolerance

“Solver Pane” on page 17-2

17-29

] 7 Solver Parameters

Shape preservation

17-30

Description
At each time step use derivative information to improve integration accuracy.

Category: Solver

Settings
Default: Disable all

Disable all

Do not perform Shape preservation on any signals.
Enable all

Perform Shape preservation on all signals.
Tips

* The default setting (Disable all) usually provides good accuracy for most models.

+ Setting to Enable all will increase accuracy in those models having signals whose
derivative exhibits a high rate of change, but simulation time may be increased.

Dependencies

This parameter is enabled only if you use a continuous-step solver.

Command-Line Information
Parameter: ShapePreserveControl
Value: "EnableAll | "DisableAll
Default: "DisableAll

Recommended Settings

Application Setting
Debugging No impact

Shape preservation

Application
Traceability
Efficiency

Safety precaution

Related Examples
. “Zero-Crossing Detection”

. “Solver Pane” on page 17-2

Setting
No impact
No impact

No impact

17-31

] 7 Solver Parameters

Maximum order

17-32

Description

Select the order of the numerical differentiation formulas (NDFs) used in the odel5s
solver.

Category: Solver

Settings
Default: 5
5

Specifies that the solver uses fifth order NDF's.
1

Specifies that the solver uses first order NDFs.
2

Specifies that the solver uses second order NDFs.
3

Specifies that the solver uses third order NDFs.
4

Specifies that the solver uses fourth order NDFs.
Tips

* Although the higher order formulas are more accurate, they are less stable.

+ If your model is stiff and requires more stability, reduce the maximum order to 2 (the
highest order for which the NDF formula is A-stable).

+ As an alternative, you can try using the ode23s solver, which is a lower order (and A-
stable) solver.

Dependencies

This parameter is enabled only if Solver is set to odel15s.

Maximum order

Command-Line Information
Parameter: MaxOrder

Type: integer
Value: 1 |12 |3]1415
Default: 5

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

Related Examples

. “Error Tolerances for Variable-Step Solvers”

. “Improve Simulation Performance Using Performance Advisor”

. “Solver Pane” on page 17-2

17-33

] 7 Solver Parameters

Solver reset method

17-34

Description
Select how the solver behaves during a reset, such as when it detects a zero crossing.

Category: Solver

Settings
Default: Fast

Fast
Specifies that the solver will not recompute the Jacobian matrix at a solver reset.
Robust

Specifies that the solver will recompute the Jacobian matrix needed by the
integration step at every solver reset.

Tips
+ Selecting Fast speeds up the simulation. However, it can result in incorrect solutions
in some cases.

+ If you suspect that the simulation is giving incorrect results, try the Robust setting.
If there is no difference in simulation results between the fast and robust settings,
revert to the fast setting.

Dependencies

This parameter is enabled only if you select one of the following solvers:

+ odel5s (Stiff/NDF)
+ 0de23t (Mod. Stiff/Trapezoidal)
+ 0de23tb (Stiff/TR-BDF2)

Command-Line Information
Parameter: SolverResetMethod

Solver reset method

Value: "Fast” | "Robust”
Default: "Fast”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples
. “Choose a Solver”

. “Solver Pane” on page 17-2

Setting

No impact
No impact
No impact

No impact

17-35

] 7 Solver Parameters

Number of consecutive min steps

17-36

Description

Specify the maximum number of consecutive minimum step size violations allowed
during simulation.

Category: Solver

Settings
Default: 1

* A minimum step size violation occurs when a variable-step continuous solver takes a
smaller step than that specified by the Min step size property (see “Min step size” on
page 17-23).

+ Simulink software counts the number of consecutive violations that it detects. If
the count exceeds the value of Number of consecutive min steps, Simulink
software displays either a warning or error message as specified by the Min step size
violation diagnostic (see “Min step size violation” on page 12-11).

Dependencies

This parameter is enabled only if you set:

+ Solver Type to Variable-step.

* Solver to a continuous variable step solver.

Command-Line Information
Parameter: MaxConsecutiveMinStep
Type: character vector

Value: any valid value

Default: 1"

Recommended Settings

Application Setting
Debugging No impact

Number of consecutive min steps

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

“Choose a Solver”
“Min step size violation” on page 12-11
“Min step size” on page 17-23

“Solver Pane” on page 17-2

17-37

] 7 Solver Parameters

Solver Jacobian Method

17-38

Description

Category: Solver

Settings

Default: Auto

auto

Sparse perturbation
Full perturbation
Sparse analytical

Full analytical

Tips
* The default setting (Auto) usually provides good accuracy for most models.

Dependencies

This parameter is enabled only if an implicit solver is used.

Command-Line Information

Parameter: SolverJacobianMethodControl

Value: "auto” | "SparsePerturbation” | "FullPerturbation”
"SparseAnalytical”® | "FullAnalytical*

Default: "auto”

Recommended Settings

Application Setting
Debugging No impact

Solver Jacobian Method

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples
. “Choose a Solver”

. “Solver Pane” on page 17-2

17-39

] 7 Solver Parameters

Treat each discrete rate as a separate task

17-40

Description

Specify whether Simulink executes blocks with periodic sample times individually or in
groups.

Category: Solver

Settings
Default: Off

|7On

Selects multitasking execution for models operating at different sample rates.
Specifies that groups of blocks with the same execution priority are processed
through each stage of simulation (for example, calculating output and updating
discrete states) based on task priority. The multitasking mode helps to create valid
models of real-world multitasking systems, where sections of your model represent
concurrent tasks.

I off

Specifies that all blocks are processed through each stage of simulation together
(for example, calculating output and updating discrete states). Use single-tasking
execution if’

* Your model contains one sample time.

* Your model contains a continuous and a discrete sample time, and the fixed-step
size is equal to the discrete sample time.

Tips

* A multirate model with multitasking mode enabled cannot reference another
multirate model that has the single-tasking mode enabled.

+ The Single task rate transition and Multitask rate transition parameters on the
Diagnostics > Sample Time pane allow you to adjust error checking for sample rate
transitions between blocks that operate at different sample rates.

Treat each discrete rate as a separate task

Dependency

This parameter is enabled by selecting the Fixed-step solver type.

Command-Line Information
Parameter: EnableMultiTasking
Value: "on" | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact for simulation or during development
Off for production code generation

Efficiency No impact

Safety precaution No recommendation

See Also

Rate Transition

Related Examples

. “Time-Based Scheduling” (Simulink Coder)

. “Model Execution and Rate Transitions” (Simulink Coder)
. “Handle Rate Transitions” (Simulink Coder)

. “Solver Pane” on page 17-2

17-41

] 7 Solver Parameters

Automatically handle rate transition for data transfer

Description

Specify whether Simulink software automatically inserts hidden Rate Transition blocks
between blocks that have different sample rates to ensure: the integrity of data transfers
between tasks; and optional determinism of data transfers for periodic tasks.

Category: Solver

Settings
Default: Off

|7On

Inserts hidden Rate Transition blocks between blocks when rate transitions are
detected. Handles rate transitions for asynchronous and periodic tasks. Simulink
software adds the hidden blocks configured to ensure data integrity for data
transfers. Selecting this option also enables the parameter Deterministic data
transfer, which allows you to control the level of data transfer determinism for
periodic tasks.

I off

Does not insert hidden Rate Transition blocks when rate transitions are detected. If
Simulink software detects invalid transitions, you must adjust the model such that
the sample rates for the blocks in question match or manually add a Rate Transition
block.

See “Rate Transition Block Options” (Simulink Coder) in the Simulink Coder
documentation for further details.
Tips

+ Selecting this parameter allows you to handle rate transition issues automatically.
This saves you from having to manually insert Rate Transition blocks to avoid invalid
rate transitions, including invalid asynchronous-to-periodic and asynchronous-to-
asynchronous rate transitions, in multirate models.

17-42

Automatically handle rate transition for data transfer

* For asynchronous tasks, Simulink software configures the inserted blocks to ensure
data integrity but not determinism during data transfers.

Command-Line Information
Parameter: AutolnsertRateTranBlk
Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact for simulation or during development
Off for production code generation

Efficiency No impact

Safety precaution No recommendation

Related Examples
. “Rate Transition Block Options” (Simulink Coder)

. “Solver Pane” on page 17-2

17-43

] 7 Solver Parameters

Deterministic data transfer

17-44

Description

Control whether the Rate Transition block parameter Ensure deterministic data
transfer (maximum delay) is set for auto-inserted Rate Transition blocks

Default: Whenever possible

Always

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is always set for auto-inserted Rate Transition blocks.

If Always is selected and if a model needs to auto-insert a Rate Transition block to
handle a rate transition that is not between two periodic sample times related by an
integer multiple, Simulink errors out.

Whenever possible

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is set for auto-inserted Rate Transition blocks whenever possible.
If an auto-inserted Rate Transition block handles data transfer between two periodic
sample times that are related by an integer multiple, Ensure deterministic data
transfer (maximum delay) is set; otherwise, it is cleared.

Never (minimum delay)

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is never set for auto-inserted Rate Transition blocks.

Note: Clearing the Rate Transition block parameter Ensure deterministic data
transfer (maximum delay) can provide reduced latency for models that do not require
determinism. See the description of Ensure deterministic data transfer (maximum
delay) on the Rate Transition block reference page for more information.

Category: Solver

Dependencies

This parameter is enabled only if Automatically handle rate transition for data
transfer is checked.

Deterministic dafa transfer

Command-Line Information

Parameter: InsertRTBMode

Value: "Always® | "Whenever possible®| "Never (minimum delay)*®
Default: "Whenever possible*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. “Rate Transition Block Options” (Simulink Coder)

. “Solver Pane” on page 17-2

17-45

] 7 Solver Parameters

Higher priority value indicates higher task priority

Description

Specify whether the real-time system targeted by the model assigns higher or lower
priority values to higher priority tasks when implementing asynchronous data transfers

Category: Solver

Settings
Default: Off

|7On

Real-time system assigns higher priority values to higher priority tasks, for example,
8 has a higher task priority than 4. Rate Transition blocks treat asynchronous
transitions between rates with lower priority values and rates with higher priority
values as low-to-high rate transitions.

I off

Real-time system assigns lower priority values to higher priority tasks, for example,
4 has a higher task priority than 8. Rate Transition blocks treat asynchronous
transitions between rates with lower priority values and rates with higher priority
values as high-to-low rate transitions.

Command-Line Information
Parameter: PositivePriorityOrder
Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

17-46

Higher priority value indicates higher task priority

Application Setting

Safety precaution No impact
Related Examples

. “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

. “Solver Pane” on page 17-2

17-47

] 7 Solver Parameters

Zero-crossing control

17-48

Description

Enables zero-crossing detection during variable-step simulation of the model. For most
models, this speeds up simulation by enabling the solver to take larger time steps.

Category: Solver

Settings
Default: Use local settings

Use local settings
Specifies that zero-crossing detection be enabled on a block-by-block basis. For a list
of applicable blocks, see “Simulation Phases in Dynamic Systems”
To specify zero-crossing detection for one of these blocks, open the block's parameter
dialog box and select the Enable zero-crossing detection option.

Enable all
Enables zero-crossing detection for all blocks in the model.

Disable all

Disables zero-crossing detection for all blocks in the model.

Tips
* For most models, enabling zero-crossing detection speeds up simulation by allowing
the solver to take larger time steps.

+ If a model has extreme dynamic changes, disabling this option can speed up the
simulation but can also decrease the accuracy of simulation results. See“Zero-
Crossing Detection” for more information.

* Selecting Enable all or Disable all overrides the local zero-crossing detection
setting for individual blocks.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Zero-crossing control

Selecting either Use local settings or Enable all enables the following
parameters:

* Time tolerance

+ Number of consecutive zero crossings

+ Algorithm

Command-Line Information

Parameter: ZeroCrossControl

Value: "UseLocalSettings®™ | "EnableAll" | "DisableAll"
Default: "UselLocalSettings*”

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Zero-Crossing Detection”

. “Number of consecutive zero crossings” on page 17-53
. “Consecutive zero-crossings violation” on page 12-13
. “Time tolerance” on page 17-50

. “Solver Pane” on page 17-2

17-49

] 7 Solver Parameters

Time tolerance

17-50

Description

Specify a tolerance factor that controls how closely zero-crossing events must occur to be
considered consecutive.

Category: Solver

Settings

Default: 10*128*eps

Simulink software defines zero crossings as consecutive if the time between events
is less than a particular interval. The following figure depicts a simulation timeline
during which Simulink software detects zero crossings ZC; and ZC,, bracketed at
successive time steps t; and ts.

.
i i
zZC, zc,
r1 r1 .
L'd L'd "
tE

Simulink software determines that the zero crossings are consecutive if

dt < RelTolZC * t,

where dt is the time between zero crossings and RelTolZC is the Time tolerance.

Simulink software counts the number of consecutive zero crossings that it detects.

If the count exceeds the value of Number of consecutive zero crossings allowed,
Simulink software displays either a warning or error as specified by the Consecutive
zero-crossings violation diagnostic (see “Consecutive zero-crossings violation” on
page 12-13).

Time folerance

Tips

+ Simulink software resets the counter each time it detects nonconsecutive zero
crossings (successive zero crossings that fail to meet the relative tolerance setting);
therefore, decreasing the relative tolerance value may afford your model's behavior
more time to recover.

+ If your model experiences excessive zero crossings, you can also increase the Number
of consecutive zero crossings to increase the threshold at which Simulink
software triggers the Consecutive zero-crossings violation diagnostic.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either Use local
settings or Enable all.

Command-Line Information
Parameter: ConsecutiveZCsStepRelTol
Type: character vector

Value: any valid value
Default: "10*128*eps*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Zero-Crossing Detection”

. “Number of consecutive zero crossings” on page 17-53
. “Zero-crossing control” on page 17-48

. “Consecutive zero-crossings violation” on page 12-13

17-51

] 7 Solver Parameters

. “Solver Pane” on page 17-2

17-52

Number of consecutive zero crossings

Number of consecutive zero crossings

Description

Specify the number of consecutive zero crossings that can occur before Simulink software
displays a warning or an error.

Category: Solver

Settings
Default: 1000

+ Simulink software counts the number of consecutive zero crossings that it detects. If
the count exceeds the specified value, Simulink software displays either a warning or
an error as specified by the Consecutive zero-crossings violation diagnostic (see
“Consecutive zero-crossings violation” on page 12-13).

+ Simulink software defines zero crossings as consecutive if the time between events is
less than a particular interval (see “Time tolerance” on page 17-50).

Tips

+ If your model experiences excessive zero crossings, you can increase this parameter to
increase the threshold at which Simulink software triggers the Consecutive zero-
crossings violation diagnostic. This may afford your model's behavior more time to
recover.

* Simulink software resets the counter each time it detects nonconsecutive zero
crossings; therefore, decreasing the relative tolerance value may also afford your
model's behavior more time to recover.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either Use local
settings or Enable all.

Command-Line Information
Parameter: MaxConsecutiveZCs

17-53

] 7 Solver Parameters

Type: character vector
Value: any valid value
Default: *1000*"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

. “Zero-Crossing Detection”

. “Zero-crossing control” on page 17-48

. “Consecutive zero-crossings violation” on page 12-13
. “Time tolerance” on page 17-50

. “Solver Pane” on page 17-2

17-54

Algorithm

Algorithm

Description
Specifies the algorithm to detect zero crossings when a variable-step solver is used.

Category: Solver

Settings
Default: Nonadaptive

Adaptive

Use an improved zero-crossing algorithm which dynamically activates and
deactivates zero-crossing bracketing. With this algorithm you can set a zero-crossing
tolerance. See “Signal threshold” on page 17-57 to learn how to set the zero-

crossing tolerance.

Nonadaptive

Use the nonadaptive zero-crossing algorithm present in the Simulink software prior
to Version 7.0 (R2008a). This option detects zero-crossings accurately, but might
cause longer simulation run times for systems with strong “chattering” or Zeno
behavior.

Tips

* The adaptive zero-crossing algorithm is especially useful in systems having strong
“chattering”, or Zeno behavior. In such systems, this algorithm yields shorter
simulation run times compared to the nonadaptive algorithm. See “Zero-Crossing
Detection” for more information.

Dependencies

* This parameter is enabled only if the solver Type is set to Variable-step.
* Selecting Adaptive enables the Signal threshold parameter.

Command-Line Information
Parameter: ZeroCrossAlgorithm

17-55

] 7 Solver Parameters

17-56

Value: "Nonadaptive® | "Adaptive*
Default: "Nonadaptive*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 17-48

“Consecutive zero-crossings violation” on page 12-13
“Time tolerance” on page 17-50

“Number of consecutive zero crossings” on page 17-53

“Solver Pane” on page 17-2

Signal threshold

Signal threshold

Description

Specifies the deadband region used during the detection of zero crossings. Signals falling
within this region are defined as having crossed through zero.

The signal threshold is a real number, greater than or equal to zero.

Category: Solver

Settings
Default: Auto

Auto
The signal threshold is determined automatically by the adaptive algorithm.
String

Use the specified value for the signal threshold. The value must be a real number
equal to or greater than zero.

Tips
* Entering too small of a value for the Signal Threshold parameter will result in long
simulation run times.

+ Entering a large Signal Threshold value may improve the simulation speed
(especially in systems having extensive chattering). However, making the value too
large may reduce the simulation accuracy.

Dependency

This parameter is enabled if the zero-crossing Algorithm is set to Adaptive.
Command-Line Information
Parameter: ZCThreshold

Value: "auto”™ | any real number greater than or equal to zero
Default: "auto”

17-57

] 7 Solver Parameters

17-58

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Related Examples

“Zero-Crossing Detection”

“Zero-crossing control” on page 17-48

“Consecutive zero-crossings violation” on page 12-13
“Time tolerance” on page 17-50

“Number of consecutive zero crossings” on page 17-53

“Solver Pane” on page 17-2

Periodic sample time constraint

Periodic sample time constraint

Description

Select constraints on the sample times defined by this model. If the model does not
satisfy the specified constraints during simulation, Simulink software displays an error
message.

Category: Solver

Settings
Default: Unconstrained

Unconstrained

Specifies no constraints. Selecting this option causes Simulink software to display a
field for entering the solver step size.

Use the Fixed-step size (fundamental sample time) option to specify solver step
size.

Ensure sample time independent

Specifies that Model blocks inherit sample time from the context in which they

are used. You cannot use a referenced model that has intrinsic sample times in a
triggered subsystem or iterator subsystem. If you plan on referencing this model

in a triggered or iterator subsystem, you should select Ensure sample time
independent so that Simulink can detect sample time problems while unit testing
this model.

+ “Sample Times for Model Referencing”

* “Inherited Sample Time for Referenced Models” (Simulink Coder)

* “Create and Reference Conditional Referenced Models”

Simulink software checks to ensure that this model can inherit its sample times from
a model that references it without altering its behavior. Models that specify a step
size (i.e., a base sample time) cannot satisfy this constraint. For this reason, selecting
this option causes Simulink software to hide the group's step size field (see “Fixed-
step size (fundamental sample time)” on page 17-62).

17-59

] 7 Solver Parameters

Specified

Specifies that Simulink software check to ensure that this model operates at a
specified set of prioritized periodic sample times. Use the Sample time properties
option to specify and assign priorities to model sample times.

“Execute Multitasking Models” (Simulink Coder) explains how to use this option for
multitasking models.

Tips

During simulation, Simulink software checks to ensure that the model satisfies the
constraints. If the model does not satisfy the specified constraint, then Simulink software
displays an error message.

Dependencies
This parameter is enabled only if the solver Type is set to Fixed-step.

Selecting Unconstrained enables the following parameters:

+ Fixed-step size (fundamental sample time)
+ Treat each discrete rate as a separate task
+ Higher priority value indicates higher task priority

+ Automatically handle rate transitions for data transfers

Selecting Specified enables the following parameters:

+ Sample time properties
* Treat each discrete rate as a separate task
* Higher priority value indicates higher task priority

+ Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SampleTimeConstraint

Value: "unconstrained” | "STIndependent® | "Specified”
Default: "unconstrained”

17-60

Periodic sample time constraint

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Specified or Ensure sample time
independent

Related Examples

. “Sample Times for Model Referencing”

. “Inherited Sample Time for Referenced Models” (Simulink Coder)
. “Create and Reference Conditional Referenced Models”

. “Function-Call Models”

. “Fixed-step size (fundamental sample time)” on page 17-62

. “Execute Multitasking Models” (Simulink Coder)

. “Solver Pane” on page 17-2

17-61

] 7 Solver Parameters

Fixed-step size (fundamental sample time)

17-62

Description

Specify the step size used by the selected fixed-step solver.

Category: Solver

Settings

Default: auto

Entering auto (the default) in this field causes Simulink to choose the step size.

If the model specifies one or more periodic sample times, Simulink chooses a step size
equal to the greatest common divisor of the specified sample times. This step size,
known as the fundamental sample time of the model, ensures that the solver will take
a step at every sample time defined by the model.

If the model does not define any periodic sample times, Simulink chooses a step size
that divides the total simulation time into 50 equal steps.

If the model specifies no periodic rates and the stop time is In¥, Simulink uses 0.2 as
the step size. Otherwise, it sets the fixed-step size to

A _ tstop ~Lstart

max 5 O

For Sine and Signal Generator source blocks, if the stop time is Inf, Simulink
calculates the step size using this heuristic:

h,.= min[(O‘Z), (é][szmax D

Otherwise, the step size is:

oot 1 1
h — . stop “sart 1=
max =T 75070\ 3)| Freg,

where Freq,,,, is the maximum frequency (Hz) of these blocks in the model.

Fixed-step size (fundamental sample time)

Dependencies

This parameter is enabled only if the Periodic sample time constraint is set to

Unconstrained.

Command-Line Information
Parameter: FixedStep

Type: character vector

Value: any valid value

Default: "auto”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples
. “Modeling Dynamic Systems”

. “Solver Pane” on page 17-2

Setting

No impact
No impact
No impact

No impact

17-63

] 7 Solver Parameters

Sample time properties

17-64

Description
Specify and assign priorities to the sample times that this model implements.

Category: Solver

Settings
No Default

* Enter an Nx3 matrix with rows that specify the model's discrete sample time
properties in order from fastest rate to slowest rate.

* Faster sample times must have higher priorities.

Format

[period, offset, priority]

period The time interval (sample rate) at which updates occur during the
simulation.
offset A time interval indicating an update delay. The block is updated

later in the sample interval than other blocks operating at the same
sample rate.

priority Execution priority of the real-time task associated with the sample
rate.

See “Specify Sample Time” for more details and options for specifying sample time.
Example
[[0.1, O, 10]; [0.2, O, 11]; [0.3, O, 12]]

* Declares that the model should specify three sample times.
+ Sets the fundamental sample time period to 0.1 second.

+ Assigns priorities of 10, 11, and 12 to the sample times.

Sample time properties

* Assumes higher priority values indicate lower priorities — the Higher priority
value indicates higher task priority option is not selected.

Tips

+ If the model's fundamental rate differs from the fastest rate specified by the model,
specify the fundamental rate as the first entry in the matrix followed by the specified
rates, in order from fastest to slowest. See “Purely Discrete Systems”.

+ If the model operates at one rate, enter the rate as a three-element vector in this field
— for example, [0.1, 0, 10].

* When you update a model, Simulink software displays an error message if what you
specify does not match the sample times defined by the model.

+ If Periodic sample time constraint is set to Unconstrained, Simulink software
assigns priority 40 to the model base sample rate. If Higher priority value
indicates higher task priority is selected, Simulink software assigns priorities 39,
38, 37, and so on, to subrates of the base rate. Otherwise, it assigns priorities 41, 42,
43, and so on, to the subrates.

* Continuous rate is assigned a higher priority than is the discrete base rate regardless
of whether Periodic sample time constraint is Specified or Unconstrained.

Dependencies

This parameter is enabled by selecting Specified from the Periodic sample time
constraint list.

Command-Line Information
Parameter: SampleTimeProperty
Type: structure

Value: any valid matrix
Default: []

Note: If you specify SampleTimeProperty at the command line, you must enter the
sample time properties as a structure with the following fields:

+ SampleTime
+ Offset

17-65

] 7 Solver Parameters

* Priority

Related Examples
. “Purely Discrete Systems”
. “Specify Sample Time”

. “Solver Pane” on page 17-2

17-66

Extrapolation order

Extrapolation order

Description

Select the extrapolation order used by the odel4x solver to compute a model's states at
the next time step from the states at the current time step.

Category: Solver

Settings
Default: 4
1

Specifies first order extrapolation.
2

Specifies second order extrapolation.
3

Specifies third order extrapolation.
4

Specifies fourth order extrapolation.
Tip

Selecting a higher order produces a more accurate solution, but is more computationally
intensive per step size.

Dependencies

This parameter is enabled by selecting odel4x (extrapolation) from the Solver list.
Command-Line Information
Parameter: ExtrapolationOrder

Type: integer
Value:1 | 2|3 1|4

17-67

] 7 Solver Parameters

17-68

Default: 4

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Related Examples
. “Choose a Fixed-Step Solver”

. “Solver Pane” on page 17-2

Setting

No impact
No impact
No impact

No impact

Number Newton's iterations

Number Newton's iterations

Description

Specify the number of Newton's method iterations used by the odel4x solver to compute
a model's states at the next time step from the states at the current time step.

Category: Solver

Settings

Default: 1
Minimum: 1
Maximum: 2147483647

More iterations produce a more accurate solution, but are more computationally
intensive per step size.

Dependencies

This parameter is enabled by selecting odel4x (extrapolation) from the Solver list.

Command-Line Information
Parameter: NumberNewtonlterations
Type: integer

Value: any valid number

Default: 1

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

17-69

] 7 Solver Parameters

Related Examples
. “Choose a Fixed-Step Solver”

“Purely Discrete Systems”

“Solver Pane” on page 17-2

17-70

Allow tasks to execute concurrently on target

Allow tasks to execute concurrently on target

Description
Enable concurrent tasking behavior for model.

Category: Solver

Settings
Default: On

|7On

Enable the model to be configured for concurrent tasking.

I off

Disable the model from being configured for concurrent tasking.
Tip
+ If the referenced mode has a single rate, you do not need to select this check box to

enable concurrent tasking behavior.

* To remove this parameter, in the Model Explorer right-click and select
Configuration > Hide Concurrent Execution options.

Dependencies

This parameter check box is visible only if you convert an existing configuration set to
one for concurrent execution. To enable this parameter, in the Model Explorer hierarchy
pane, right-click and select Configuration > Show Concurrent Execution options.
The Dialog pane is displayed with the Allow tasks to execute concurrently on
target check box and a Configure Tasks button.

+ If this parameter check box is selected when you click the Configure Tasks button,
the Concurrent Execution dialog box is displayed.

+ If this parameter check box is cleared, the following parameters are enabled:

+ Periodic sample time constraint

+ Treat each discrete rate as a separate task

17-71

] 7 Solver Parameters

+ Automatically handle rate transition for data transfer
Higher priority value indicates higher task priority

* To make this parameter check box and button visible with the command-line
information, set the EnableConcurrentExecution to "on". By default, this
parameter is set to "ofFF".

Command-Line Information
Parameter: ConcurrentTasks

Value: "on® | "off"
Default: "on*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Safety precaution No recommendation

Related Examples
. “Concurrent Execution Window: Main Pane” on page 22-2

. “Solver Pane” on page 17-2

17-72

Library Browser

+ “Use the Library Browser” on page 18-2
+ “Library Browser Keyboard Shortcuts” on page 18-5

18

Library Browser

Use the Library Browser

18-2

In this section...

“Libraries Pane” on page 18-2
“Blocks Pane” on page 18-3
“Search for Blocks in the Library Browser” on page 18-3

Libraries Pane

Use the libraries pane to locate blocks by navigating block libraries. The pane displays
a tree view of the libraries installed on your system. You can navigate the tree using
your mouse or keyboard. Use the arrow keys to move through the library and expand or
collapse libraries. When you select a library, its contents appear in the blocks pane.

Add Blocks Used Recently

The Library Browser provides quick access to the blocks you have used most recently. At
the bottom of the libraries pane, click Recently Used to display the blocks in the blocks
pane.

Note: Only blocks added to your model from the Library Browser appear under Recently
Used.

Refresh the Library Browser

To refresh the libraries displayed in the Library Browser, right-click in the libraries pane
and select Refresh Library Browser. The Library Browser updates to display any
libraries or blocks added to or deleted from the MATLAB path since the library browser
was last opened or refreshed.

Refresh your library browser if you:

* Modify existing libraries or resave them in .slx file format.
+ Update repository information for a library.

+ Move or delete your library files.

* Add a library.

Use the Library Browser

* Change your Library Browser customizations. See “Customize Library Browser
Appearance”.

Blocks Pane

The blocks pane in the Library Browser displays the contents of the library selected
in the libraries pane. You can use the blocks pane to navigate libraries, view block
parameters or help, and create instances of library blocks in models.

Navigate Libraries

To open a library in the blocks pane, double-click the library. To return to the parent,
from the block context menu, select Go to parent.

View Block Description, Parameters, and Help
To display the description and library path of a block, hover over the block.

To view the block parameters, double-click the block or, from the block context menu,
select Block parameters.

To display help for a library block, from the block context menu, select Help for the
<name> block.

Add Blocks to Models from the Library
To add an instance of a library block to an open model using the Library Browser:

+ Select the block in the blocks pane and drag it into the model window.

+ From the block context menu, select Add block to model <model_name>, where
<model_name> is the currently active model. If no model is open, use this command
to create a model and add the block to it.

Search for Blocks in the Library Browser

1 Enter the search string in the search text box or select from the recent search list.

Enter search term -~ Ry -

2 Use the search button menu to specify the search options you want to use, for
example, match whole words.

18-3

18 Library Browser

R, E]
Regular expression
Match case

Match whole word

3 Press Enter to start the search.

The blocks pane displays the blocks found, grouped by library. To see where the search
string matched, hover over a block. To navigate to a block’s library, from the block
context menu, select Select in library view.

18-4

Library Browser Keyboard Shortcuts

Library Browser Keyboard Shortcuts

Task Shortcut
Open a model Ctrl+O
Open Library Browser from a Ctrl+Shift+L

model

Move selection down in the
Blocks or Libraries pane

Down arrow

Move selection up in the Blocks
or Libraries pane

Up arrow

Expand a node in the Libraries
pane

Right arrow

Collapse a node in the Libraries
pane

Left arrow

Refresh Libraries pane F5
Show parent library in Blocks Esc
pane

Select a block found with the Ctrl+R
search tool in the Blocks pane

Insert the selected block in a Ctrl+I
new model

Increase zoom in the Blocks Ctrl++
pane

Decrease zoom in the Blocks Ctrl+-
pane

Reset zoom to default in the Alt+1
Blocks pane

Find a block Ctrl+F
Close Ctrl+W

18-5

Signal Properties Dialog Box

“Signal Properties Dialog Box Overview” on page 19-2

“Signal Properties Controls” on page 19-4

“Logging and Accessibility Options” on page 19-6

“Code Generation Options” on page 19-9

“Data Transfer Options for Concurrent Execution” on page 19-11

“Documentation Options” on page 19-13

19 Signal Properties Dialog Box

Signal Properties Dialog Box Overview

The Signal Properties dialog box lets you display and edit signal properties. To display
the dialog box, either

+ Select the line that represents the signal whose properties you want to set and then
choose Signal Properties from the signal's context menu or from the Simulink Edit
menu

or

+ Select a block that outputs or inputs the signal and from the block's context menu,
select Signals & Ports and then either Input Port Signal Properties or Output
Port Signal Properties, then select the port to which the signal is connected from
the resulting menu.

The Signal Properties dialog box appears.

Signal Properties: @

Signal name:
Signal name must resolve to Simulink signal object

Show propagated signals

Logging and accessibility | Code Generation Documentation

[7] Log signal data [] Test point
Logging name

Use signal name

Data
Limit data points to last: | 5000
Decimation: 2

Sample time: =1l

[0K H Cancel H Help] Apply

The dialog box includes the following controls.

+ “Signal Properties Controls” on page 19-4
+ “Logging and Accessibility Options” on page 19-6

19-2

Signal Properties Dialog Box Overview

* “Code Generation Options” on page 19-9
+ “Data Transfer Options for Concurrent Execution” on page 19-11

* “Documentation Options” on page 19-13

19-3

19 Signal Properties Dialog Box

Signal Properties Controls

Signal name
Name of signal.

To name a signal programmatically, see “Name a Signal Programmatically”.

Signal name must resolve to Simulink signal object

Specifies that either the base MATLAB workspace, the model workspace, or the data
dictionary must contain a Simulink.Signal object with the same name as this signal.
Simulink software displays an error message if it cannot find such an object when you
update or simulate the model containing this signal.

Note: Simulink.Signal objects in the model workspace must have their storage class
set to Auto. See “Model Workspaces” for more information.

When Signal name must resolve to Simulink signal object is enabled, a signal
resolution icon appears by default to the left of any label on the signal. The icon looks like
this:

-£

See “Signal to Object Resolution Indicator” for more information.

This property appears only if you set the model configuration parameter Signal
resolution to a value other than None.

To set this option programmatically, use the port parameter
MustResolveToSignhalObject. See “Use Signal Objects”.

Show propagated signals

Note This option is available only for signals that originate from blocks that support
signal label propagation. For a list of the blocks, see “Blocks That Support Signal Label
Propagation”.

19-4

Signal Properties Controls

Enabling this property causes Simulink to create a propagated signal label.

For example, in the following model, the output signal from the Subsystem block is
configured for signal label propagation. The propagated signal label (<const>) is based
on the name of the upstream output signal of the Constant block (const).

1 = In1 Olip— 1
oonst “oonst> h‘,.-:

Constant Sutsystem Zain

For more information, see “Signal Label Propagation”.

To set this option programmatically, use the port parameter SignalPropagation. See
“Display Propagated Signal Labels”.

More About

. “Signal Properties Dialog Box Overview” on page 19-2

19-5

19 Signal Properties Dialog Box

Logging and Accessibility Options

Select the Logging and accessibility tab on the Signal Properties dialog box to
display controls that enable you to specify signal logging and accessibility options for this
signal.

Logging and accessibility | Code Generation | Documentation |

[] Log signal data [] Test point
Logging name

Use signal name

Data
Limit data points to last: 5000

Decimation: 2

Log signal data

Select this option to cause Simulink software to save this signal's values to the MATLAB
workspace during simulation. See “Export Signal Data Using Signal Logging” for details.

To set this option programmatically, use the port parameter DatalLogging. See
“Programmatic Interface”.

Test point

Select this option to designate this signal as a test point. See “Test Points” for details.
To set this property programmatically, use the port parameter TestPoint. See
“Configure Signals as Test Points”.

Logging name

This pair of controls, consisting of a list box and an edit field, specifies the name
associated with logged signal data.

Logging name

Use signal name -

Use signal name
Custom

19-6

Logging and Accessibility Options

Simulink software uses the signal's signal name as its logging name by default. To
specify a custom logging name, select Custom from the list box and enter the custom
name in the adjacent edit field.

To set these properties programmatically, use the port parameters
DataloggingNameMode and DataloggingName. See “Signal-Specific Logging Name
Specified Programmatically”.

Data

This group of controls enables you to limit the amount of data that Simulink software
logs for this signal.

Data
Limit data points to last: |5000

Decimation: 2

The options are as follows.
Limit data points to last

Discard all but the last N data points where N is the number entered in the adjacent edit
field.

To set these properties programmatically, use the port parameters
DatalLoggingLimitDataPoints and DatalLoggingMaxPoints. To set signal properties
programmatically by using port parameters, see “Programmatically Specify Signal
Properties”.

Decimation

Log every Nth data point where N is the number entered in the adjacent edit field. For
example, suppose that your model uses a fixed-step solver with a step size of 0.1 s. if
you select this option and accept the default decimation value (2), Simulink software
records data points for this signal at times 0.0, 0.2, 0.4, etc.

To set these properties programmatically, use the port parameters
DataloggingDecimateData and DatalLoggingDecimation. To set signal properties
programmatically by using port parameters, see “Programmatically Specify Signal
Properties”.

19-7

19 Signal Properties Dialog Box

More About

. “Signal Properties Dialog Box Overview” on page 19-2

19-8

Code Generation Options

Code Generation Options

The following controls set properties that Simulink Coder uses to generate code from the
model. If you are not going to generate code from the model, ignore them.

Signal object class

Choose a custom storage class package by selecting a signal object class that the target
package defines. For example, to apply custom storage classes from the built-in package
mpt, select mpt.Signal. Unless you use an ERT-based code generation target with
Embedded Coder, custom storage classes do not affect the generated code.

If the class that you want does not appear in the drop-down list, select Customize
class lists. For instructions, see “Apply Custom Storage Classes Directly to Signal
Lines, Block States, and Outport Blocks” (Embedded Coder).

To apply storage classes interactively or programmatically, see “Control Signals and
States in Code by Applying Storage Classes” (Simulink Coder). For information about
custom storage classes, see “Control Data Representation by Applying Custom Storage
Classes” (Embedded Coder).

Storage class

Select a storage class or custom storage class for the signal. To apply storage classes
interactively or programmatically, see “Control Signals and States in Code by Applying
Storage Classes” (Simulink Coder). For information about custom storage classes, see
“Control Data Representation by Applying Custom Storage Classes” (Embedded Coder).

Type qualifier
Enter a storage type qualifier for this signal such as const or volatile.

This parameter is hidden unless you previously set its value. To enable this parameter,
set Storage class to ExportedGlobal, ImportedExtern, ImportedExternPointer,
or SimulinkGlobal.

Type qualifier will be removed in a future release. To apply storage type qualifiers to
data, use custom storage classes and memory sections. Unless you use an ERT-based
code generation target with Embedded Coder, custom storage classes and memory
sections do not affect the generated code.

19-9

19 Signal Properties Dialog Box

More About

. “Signal Properties Dialog Box Overview” on page 19-2

19-10

Data Transfer Options for Concurrent Execution

Data Transfer Options for Concurrent Execution

This tab displays the data transfer options for configuring models for targets with
multicore processors. To enable this tab, in the Model Explorer for the model, right-click
Configuration, then select the Show Concurrent Execution option.

In this section...

“Specify data transfer settings” on page 19-11
“Data transfer handling option” on page 19-11

“Extrapolation method (continuous-time signals)” on page 19-11

“Initial condition” on page 19-11

Specify data transfer settings

Enable custom data transfer settings. For more information, see “Configure Data
Transfer Settings Between Concurrent Tasks”.

Data transfer handling option

Select a data transfer handling option. For more information, see “Configure Data
Transfer Settings Between Concurrent Tasks”.

Extrapolation method (continuous-time signals)

Select a data transfer extrapolation method. For more information, see “Configure Data
Transfer Settings Between Concurrent Tasks”.

Initial condition

For discrete signals, this parameter specifies the initial input on the reader side of the
data transfer. It applies for data transfer types Ensure Data Integrity Only and
Ensure deterministic transfer (maximum delay). Simulink does not allow this
value to be Inf or NaN.

For continuous signals, the extrapolation method of the initial input on the reader side
of the data transfer uses this parameter. It applies for data transfer types Ensure Data

19-11

19 Signal Properties Dialog Box

Integrity Only and Ensure deterministic transfer (maximum delay).
Simulink does not allow this value to be Inf or NaN.

For more information, see “Configure Data Transfer Settings Between Concurrent
Tasks”.

More About

. “Signal Properties Dialog Box Overview” on page 19-2

19-12

Documentation Options

Documentation Options

Description
In this field, enter a description of the signal.

The description that you specify in the Signal Properties dialog box does not appear in
the generated code. To add a signal description as a comment in the generated code, you
must use a Simulink signal object. For more information, see Simulink.Signal.

Document link

In the field that displays documentation for the signal, enter a MATLAB expression. To
display the documentation, click Document Link. For example, entering the expression

web(["File:///" which("foo_signal _html®)])

causes the MATLAB software default Web browser to display foo_signal .html when
you click the field label.

To set this property programmatically, use the programmatic port parameter
DocumentLink:

% Get a handle to the block output port

% that creates the target signal.

portHandles = get_param("myModel/myBlock”, "portHandles®);
outportHandle = portHandles.Outport;

% Set the document link.

set_param(outportHandle, "DocumentLink®, ...
"web([""file:///"" which(""foo_signal_html"*)])")

More About

. “Signal Properties Dialog Box Overview” on page 19-2

19-13

Simulink Preferences Window

+ “Set Simulink Preferences” on page 20-2

+ “Simulink Preferences General Pane” on page 20-3

+ “Simulink Preferences Model File Pane” on page 20-14
* “Simulink Preferences Editor Pane” on page 20-29

+ “Font Styles for Models” on page 20-33

20 Simulink Preferences Window

Set Simulink Preferences

20-2

Simulink Preferences Window Overview

You can use Simulink Preferences to specify Simulink editing environment options and
default behaviors. Your settings affect the behavior of all Simulink models, including
those currently open, and all subsequent models. Your preference settings are preserved
for the next time you use the software. The Simulink Preferences window has these
panes:

+ “Simulink Preferences General Pane” on page 20-3

Set preferences for generated file folders; background colors for print or export; Model
block, callback, and sample time legend display.

+ “Simulink Preferences Editor Pane” on page 20-29

Configure the Simulink Editor.
* “Simulink Preferences Model File Pane” on page 20-14

Set preferences for file change, autosave, version notifications, and other behaviors
relating to model files.

To open the Simulink Preferences dialog box:

* From a Simulink Editor menu, select File > Simulink Preferences.
* In the MATLAB Command Window, enter

slprivate("showprefs®)
See Also

+ “Create a Template from a Model”
+ “Simulink Preferences General Pane” on page 20-3
+ “Simulink Preferences Editor Pane” on page 20-29

+ “Simulink Preferences Model File Pane” on page 20-14

Simulink Preferences General Pane

Simulink Preferences General Pane

20-3

20 Simulink Preferences Window

Simulink General Preferences Overview

Set preferences to specify the location for generated file folders and background colors for
print or export. You also set these preferences to specify information about Model blocks,
callbacks, and sample time legend display.

See Also

* “Simulink Preferences Model File Pane” on page 20-14

+ “Simulink Preferences Editor Pane” on page 20-29

Folders for Generated Files

Use these preferences to control the location of model build artifacts. By default, build
artifacts are placed in the current working folder (pwd) at the start of a diagram update
or code generation. For more information, see these options:

+ “Simulation cache folder” on page 20-5

+ “Code generation folder” on page 20-6

20-4

Simulink Preferences General Pane

Simulation cache folder

Specify the root folder in which to put model build artifacts used for simulation.
Settings

Default:" "

Specify a valid folder path. If you do not specify a path, build artifacts are placed in the
current working folder (pwd) when you update a diagram.

Tips
* You can specify an absolute or relative path to the folder. For example:

C:\Work\mymodelsimcache and /mywork/mymode Isimcache specify absolute
paths.

+ mymodelsimcache is a path relative to the current working folder (pwd).
The software converts a relative path to a fully qualified path when you set
the preference. For example, if pwd is "/mywork®, the result is /mywork/
mymode lsimcache.

+ . ./test/mymodelsimcache is a path relative to pwd. If pwd is */mywork™, the
result is /test/mymodelsimcache.

* The simulation cache folder is where Simulink cache files are created. For details
about these cache files, see “Reuse Simulation Builds for Faster Simulations”.

Command-Line Information
Parameter: CacheFolder
Type: character vector
Value: valid folder path
Default: "~

See Also

* “Simulation Target Output File Control”

+ “Reuse Simulation Builds for Faster Simulations”

20-5

20 Simulink Preferences Window

20-6

Code generation folder

Specify the root folder in which to put Simulink Coder code generation files.
Settings

Default:" "

Specify a valid folder path. If you do not specify a path, build artifacts are placed in the
current working folder (pwd) when you start to generate code.

Tip
You can specify an absolute or relative path to the folder. For example:

+ C:\Work\mymodelgencode and /mywork/mymode lgencode specify absolute paths.

+ mymodelgencode is a path relative to the current working folder (pwd). The software
converts a relative path to a fully qualified path at the time the preference is set. For
example, if pwd is */mywork®, the result is /mywork/mymode lgencode.

+ . ./test/mymodelgencode is a path relative to pwd. If pwd is */mywork®, the result
is /test/mymodelgencode.

Command-Line Information
Parameter: CodeGenFolder
Type: character vector
Value: valid folder path
Default: "~

See Also

“Build Folder and Code Generation Folders” (Simulink Coder) in the Simulink Coder
documentation

Simulink Preferences General Pane

Background Color

Use these preferences to control the background color for printing, exporting to another
format, and models copied to the clipboard for export to another application.

* “Print” on page 20-8
+ “Export” on page 20-9
* “Clipboard” on page 20-10

20-7

20 Simulink Preferences Window

Print

Use a white canvas (background) or the canvas color of the model when printing a model.
Settings
Default: White

White
Use a white canvas.
Match Canvas Color
Match the canvas color of the model.
Command-Line Information
Parameter: PrintBackgroundColorMode

Value: "White" | "MatchCanvas”
Default: "White”

See Also
“Share Models”

20-8

Simulink Preferences General Pane

Export

Match the canvas (background) color of the model, use a white canvas, or use a
transparent canvas for model files that you export to another file format, such as .png or

-jpeg.
Settings
Default: Match Canvas Color

Match Canvas Color
Match the canvas color of the model.
White
Use a white canvas.
Transparent
Use a transparent canvas, so that whatever is behind the canvas image shows
through.

Command-Line Information

Parameter: ExportBackgroundColorMode

Value: "White" | "MatchCanvas® | "Transparent”
Default: "MatchCanvas™

See Also

“Copy Model Views to Third-Party Applications”

20-9

20 Simulink Preferences Window

Clipboard

Match the canvas (background) color of the model, use a white canvas, or use a
transparent canvas for model files that you export to another application.

Settings
Default: Match Canvas Color

Match Canvas Color
Match the canvas color of the model.
White
Use a white canvas.
Transparent
Use a transparent canvas, so that whatever is behind the canvas image shows

through.

Command-Line Information
Parameter: Cl ipboardBackgroundColorMode
Value: "White" | "MatchCanvas” | "Transparent”
Default: MatchCanvas

See Also

“Print Models to Image File Formats”

20-10

Simulink Preferences General Pane

Warn when opening Model blocks with Normal Mode Visibility set to off

Show a warning when you open a model from Model blocks that have normal mode
visibility set to off.

All instances of a normal mode referenced model are part of the simulation. However,
Simulink displays only one instance in a model window; that instance is determined
by the normal mode visibility setting. Normal mode visibility includes the display of
Scope blocks and data port values. When you open a model from a Model block that has
normal mode visibility set to off, the referenced model shows data from the instance of
that model has normal mode visibility set to on.

Settings

Default: On

Y On

After simulation, Simulink displays a warning if you try to open a referenced model
from a Model block that has normal mode visibility set to off. Simulink does not open
the instance referenced by that Model block, but instead opens the instance that has
normal mode visibility set to on. The instance that has normal mode visibility set to
on has different input data sources than the instance referenced by the Model block
that you opened.

Off

No warning is displayed if, after simulation, you try to open a referenced model from
a Model block that has normal mode visibility set to off.

Tip
The warning that appears includes an option to suppress the display of the warning in

the future. Enabling that option sets this preference to off. Use this preference to resume
the display of the warning.

See Also

“Simulate Models with Multiple Referenced Model Instances”

20-11

20 Simulink Preferences Window

Show callback tracing

Specify whether to display the model callbacks that Simulink invokes when simulating a
model.

Settings

Default: Off

Y On
Display the model callbacks in the MATLAB command window as they are invoked.

Callback tracing allows you to determine the callbacks invoked and their order when
you open or simulate a model.

Off

Do not display model callbacks.
Command-Line Information
Parameter: Cal lbackTracing

Value: "on® | "off"
Default: "off"

20-12

Simulink Preferences General Pane

Open the sample time legend when the sample time display is changed

Specify whether to display the sample time legend whenever sample time display
changes.

Settings

Default: On

Y1 On

Display the sample time legend whenever you change sample time display by

selecting Colors, Annotations, or All from the Sample Time Display menu. The model
updates and the legend opens.

Off
Do not display the sample time legend whenever sample time display changes.

Command-Line Information
Parameter: OpenLegendWhenChangingSampleTimeDisplay

Value: "on® | "off"
Default: "on*
See Also

“View Sample Time Information”

20-13

20 Simulink Preferences Window

Simulink Preferences Model File Pane

Simulink Model File Preferences Overview

Set preferences for file change, autosave, version notifications, and other behaviors
relating to model files

These options affect the behavior of all Simulink models.
See Also

“Simulink Preferences General Pane” on page 20-3

“Simulink Preferences Editor Pane” on page 20-29

20-14

Simulink Preferences Model File Pane

File format for new models and libraries
Settings

Default:SLX

Specify the default file format for new models and libraries.

MDL
Save new models and libraries in MDL format.
SLX

Save new models and libraries in SLX format.

Command-Line Information
Parameter: ModelFileFormat
Value: "mdl™ | "slIx”
Default: sIx

Tip
You can choose model file format when using Save As.
See Also

“Save Models in the SLX File Format”

20-15

20 Simulink Preferences Window

20-16

Save a thumbnail image inside SLX files

Specify whether to save a small screenshot of the model to display in the Current Folder
browser preview pane.

Settings

Default: On

Y1 On

When saving the model, include a small screen shot of the model inside the SLX file.
You can view the screen shot for a selected model in the Current Folder browser
preview pane.

Off

Do not save a screenshot of the model.
Tip

If your model is very large and you want to reduce the time taken to save the model, then
you can turn this preference off to avoid saving thumbnail model images.

Command-Line Information
Parameter: SaveSLXThumbnail
Value: "on® | "off"

Default: on

Simulink Preferences Model File Pane

Change Notification

Use these preferences to specify notifications if the model has changed on disk when you
update, simulate, edit, or save the model. When updating or simulating, you can choose
whether to warn, error, reload if unmodified, or show a dialog box that lets you choose to
reload or ignore. For more information, see “Model File Change Notification”.

You can set these options under Change Notification:

+ “Updating or simulating the model” on page 20-18
+ “Action” on page 20-19

+ “First editing the model” on page 20-20

+ “Saving the model” on page 20-21

20-17

20 Simulink Preferences Window

Updating or simulating the model

Specify whether to notify if the model has changed on disk when updating or simulating
the model.

Settings
Default: On

Y1 On

Notify if the model has changed on disk when updating or simulating the model.
Select the action to take in the Action list.

Off

Do not notify if the model has changed on disk when updating or simulating the
model.

Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function sl IsFileChangedOnDisk.

Dependency
This parameter makes Action available.

Command-Line Information

Parameter: MDLFi1 leChangedOnDiskChecks
Type: struct, field name: CheckWhenUpdating
Value: true | false |1 | 0

Default: true

See Also

“Model File Change Notification”

20-18

Simulink Preferences Model File Pane

Action

Select the action to take if the file has changed on disk since it was loaded.
Settings

Default: Warning

Warning
Displays a warning in MATLAB command window
Error

Displays an error. If simulating programmatically, the error appears in the MATLAB
command window. If simulating interactively, the error appears in a Simulation
Diagnostics window.

Reload model (if unmodified)

Reloads if the model is unmodified. If the model is modified, the prompt dialog box
appears.

Show prompt dialog

Shows prompt dialog box in which you can choose to close and reload or ignore the
changes.

Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function sl IsFileChangedOnDisk

Dependency
This parameter is enabled by the Updating or simulating the model parameter.

Command-Line Information

Parameter: MdIFileChangedOnDiskHandling

Value: "Warning® | "Error”® | "Reload model (if unmodified)" | "Show
prompt dialog*

Default: "Warning*

See Also

“Model File Change Notification”

20-19

20 Simulink Preferences Window

20-20

First editing the model
Specify whether to notify if the file has changed on disk when editing the model.
Settings

Default: On

Y1 On

Displays a warning if the file has changed on disk when you modify the block
diagram. Any interactive operation that modifies the block diagram (e.g., adding

a block) causes a warning dialog box to appear. Any programmatic operation that
causes the block diagram to be modified (e.g., a call to set_param) causes a warning
in the MATLAB Command Window

Off
Do not check for changes on disk when first editing the model.
Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function sl IsFileChangedOnDisk.

Command-Line Information

Parameter: MDLFi leChangedOnDiskChecks
Type: struct, field name: CheckWhenEditing
Value: true | false | 1] 0

Default: true

See Also

“Model File Change Notification”

Simulink Preferences Model File Pane

Saving the model
Specify whether to notify if the file has changed on disk when saving the model.
Settings
Default: On
Y1 On
Notify if the file has changed on disk when you save the model.

* Saving the model in the Simulinkc Editor auses a dialog box to appear. In the
dialog box, you can choose to overwrite or save with a new name.

* The save_system function displays an error, unless you use the
OverwritelfChangedOnDisk option.

Off
Do not check for changes on disk when saving the model.
Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function sl IsFileChangedOnDisk.

Command-Line Information

Parameter: MDLFi leChangedOnDiskChecks
Type: struct, field name: CheckWhenSaving
Value: true | false |1 |0

Default: true

See Also

“Model File Change Notification”

20-21

20 Simulink Preferences Window

Autosave Options

Use the autosave preferences to specify whether to automatically save a backup copy of

the model before updating or simulating, or when overwriting with a newer version of
Simulink.

For more information, see these options:

“Save before updating or simulating the model” on page 20-23

“Save backup when overwriting a file created in an older version of Simulink” on page
20-24

20-22

Simulink Preferences Model File Pane

Save before updating or simulating the model

Specify whether to automatically save a backup copy of the model before updating or
simulating.

Settings
Default: On

¥ on

If the model has unsaved changes, automatically save a backup copy of the model
before updating or simulating. This autosave copy can be useful for crash recovery.

The copy is saved in the same directory as the model, with the name
MyModel .slx_autosave or MyModel .mdl .autosave.

= ofr

Do not automatically save a copy before updating or simulating.
Tips
+ If you open or load a model that has a more recent autosave copy available, then after

the model loads, a dialog box prompts to restore, ignore, or discard the autosave copy.
If multiple models area involved, then the Model Recovery dialog box appears.

L>]Model Recovery S =
The following models have been sutomatically saved more recently thanthe versiors that you aretryingtolosd.
¥ Keep a copy of original model File, (As <name =.mdl.original.)
|
Restore Delste Autosave Ignore Model Path Model Last Modfied Autosave Crested
Restore Al Delete Al Ignore All
¥ j . modell H:\DocumentsiSmaltests 19-Dec-2007 14:09:55 19-Dec-2007 14:15:24
I [L model2 Hi\Documenks\Smaltests 07-Dec-2007 10:19:02 19-Dec-2007 14:15:31
- I [~ modeld Hi\Documents\Smaltests 17-Dec-2007 12:47:49 19-Dec-2007 14:15:27
ok | conce | neo |

For each model in the list, you can select a check box to specify whether to Restore,
Delete Autosave, or Ignore. Or you can click the Restore All, Delete All or
Ignore All button to select that option for all listed models.

20-23

20 Simulink Preferences Window

Option Result

Restore Overwrite the original model file with the autosave copy,
and delete the autosave copy. Simulink will close the
model and reload from the restored file. If you select

the check box to Keep a copy of original model file,
you can save copies of the original model files named
MyModel .six.original or MyModel .mdl .original.

Delete Autosave Delete the autosave copy.

Ignore Leave the model and the autosave copy untouched. This
setting is the default. The next time you open the model,
the Model Recovery dialog will reappear and you can
choose to restore or delete autosave files.

+ Closing a modified model deletes any autosave copy.

* Autosave does not occur for models that are part of the MATLAB installation, so you
will not create autosave copies of those models.

+ Autosave does not occur if the autosave file or location is read only.

+ Autosave does not occur in Parallel Computing Toolbox™ workers.

Caution: If a segmentation violation occurred, then the last autosave file for the model
reflects the state of the autosave data prior to the segmentation violation. Because
Simulink models might be corrupted by a segmentation violation, Simulink does not
autosave a model after a segmentation violation occurs.

Command-Line Information

Parameter: AutoSaveOptions

Type: struct, field name: SaveOnModelUpdate
Value: true | false | 1] 0

Default: true

Save backup when overwriting a file created in an older version of
Simulink

Specify whether to automatically save a backup copy of the model when overwriting with
a newer version of Simulink.

20-24

Simulink Preferences Model File Pane

Settings

Default: On

Y On

If saving the model with a newer version of Simulink, automatically save a backup
copy of the model. This backup copy can be useful for recovering the original file in
case of accidental overwriting with a newer version.

The backup copy is saved in the same directory as the model, with the name
MyModel .slx_Version or MyModel .mdl .Version, where Version is the last
version that saved the model, e.g., R2010a.

Off

Do not automatically save a backup copy when overwriting a model with a newer
version of Simulink.

Tip
To recover the original model, rename the backup copy to MyModel .mdl or

MyModel .sIx by deleting the Version suffix.

Command-Line Information

Parameter: AutoSaveOptions

Type: struct, field name: SaveBackupOnVersionUpgrade
Value: true | false | 1] 0

Default: true

20-25

20 Simulink Preferences Window

Notify when loading an old model

Specify whether to notify when loading a model last saved in a older version of Simulink
software.

Settings
Default: Off

Y On
Print a message in the command window when loading a model last saved in an old
version of Simulink software.

Off

No notification when loading old models.
Tips
* Run the Upgrade Advisor to convert the block diagram to the format of the current

version of Simulink software.

* For advice on upgrading a model to the current version of Simulink, see “Model
Upgrades”.

Command-Line Information

Parameter: NotifylfLoadOldModel
Value: "on”" | "off"

Default: off

20-26

Simulink Preferences Model File Pane

Do not load models created with a newer version of Simulink

Specify whether to load a model last saved in a newer version of Simulink software.
Settings

Default: On

Y On
Do not load any model last saved in a newer version of Simulink software, and print

an error message in the command window.

Off

Load models last saved in a newer version of Simulink software, and print a warning
message in the command window.

Tip

If possible, use the Save As command to convert the block diagram to the format of

the desired version of Simulink software. The Save As command allows you to save a
model created with the latest version of the Simulink software in formats used by earlier
versions. See “Export a Model to a Previous Simulink Version”.

Command-Line Information
Parameter: ErrorlfLoadNewModel
Value: "on® | "off"

Default: on

20-27

20 Simulink Preferences Window

Do not load models that are shadowed on the MATLAB path

Specify whether to load a model that is shadowed by another file of the same name
higher on the MATLAB path.

Settings

Default: Off

Y1 On

Do not load any model that is shadowed by another file of the same name higher
on the MATLAB path, and print an error message in the command window. This
preference applies when you try to open or load a model or library by either:

+ Selecting a file in the current folder browser

Calling open_system or load_system with a path to a file in a different folder
to the current folder

Off
Load shadowed models, and print a warning message in the command window.

Command-Line Information
Parameter: Error1fLoadShadowedModel

Value: "on” | "off"
Default: off
See Also

“Shadowed Files”.

20-28

Simulink Preferences Editor Pane

Simulink Preferences Editor Pane

Simulink Editor Preferences Overview

Configure the Simulink Editor. These options affect the behavior of all Simulink models.
The options relate to the how models appear in terms of the visual theme, the scroll
wheel behavior, and the toolbar configuration.

See Also

+ “Simulink Preferences General Pane” on page 20-3

* “Simulink Preferences Model File Pane” on page 20-14

Use classic diagram theme

Cause Simulink diagrams to appear in the Simulink Editor using the visual theme that
was used in the Simulink Editor before R2012b.

If you check Use classic diagram theme, Simulink does not display content preview.
For details, see “Preview Content of Hierarchical Items”.

Line crossing style

Change the default display for signal lines that cross. By default, straight signal lines
that cross each other but are not connected display a slight gap before and after the
vertical line where it intersects the horizontal line. This display style is Tunnel.

The Line Hop format shows a bend where the vertical line intersects the horizontal line.
Simulink adjusts the side the bend appears on to avoid overlapping with a block icon. If
having the bend on either side overlaps with a block, Simulink uses a solid line.

The None format uses solid lines. This format can provide a slight performance
improvement for updating very large models. If you enable the Simulink Preferences >
Editor Defaults > Use classic diagram theme preference, Simulink uses a solid line.

Scroll wheel controls zooming

Use the scroll wheel on the mouse to zoom in and out without the Ctrl key modifier.
On Macintosh platforms with an Apple Magic Trackpad, if you enable Seroll wheel
controls zooming, a panning gesture causes zooming.

20-29

20 Simulink Preferences Window

20-30

Enable smart editing features

Use smart editing cues to perform common model editing tasks quickly. These features
appear based on context. Select this check box to enable:
* Quick insert — Add a block to a model by typing a block name.

+ Tear-off block addition — Add a complementary block from a block tear-off cue. For
example, when you add a GoTo block, you can use a tear-off to add a corresponding
From block.

* Multiselection actions — Perform actions from the prompt that appears when you
select multiple blocks.

* Single-selection actions — Perform actions from the prompt that appears when you
select a block or a signal.

By default, these features are enabled.

Edit key parameter when adding new blocks

When you add a block to a model, a prompt appears so that you can enter a key
parameter. This feature is enabled by default. Clear this check box if you do not want the
prompt to appear.

Toolbar Configuration

Use these preferences to control the buttons that appear on the toolbar. For more
information, see these options:

+ “Simulation cache folder” on page 20-5

+ “Code generation folder” on page 20-6

File Toolbar

Specify whether to display the New and Save buttons, the New, Open, and Save
buttons, or no file buttons in the toolbar.

Print

Specify whether to show the Print button in the toolbar.

Simulink Preferences Editor Pane

Cut/Copy/Paste

Specify whether to show the Cut, Copy, and Paste buttons in the toolbar.

Undo/Redo

Specify whether to show the Undo and Redo buttons in the toolbar.

Browse Back/Forward/Up

Specify whether to show the browsing buttons in the toolbar.

Library/Model Configuration/Model Explorer

Specify whether to show the Library, Model Configuration, and Model Explorer
buttons in the toolbar.

Refresh Blocks

Specify whether to show the Refresh Blocks in the toolbar.

Update Diagram

Specify whether to show the Update Diagram button in the toolbar.

Simulation

Specify whether to show the simulation controls in the toolbar.

Fast Restart

Specify whether to show the Fast Restart button with the simulation controls in the
toolbar.

Debug Model

Specify whether to show the Debug Model button in the toolbar.

20-31

20 Simulink Preferences Window

Model Advisor

Specify whether to show the Model Advisor button in the toolbar.

Build

Specify whether to show the Build button in the toolbar.

Find

Specify whether to show the Find button in the toolbar.

20-32

Font Styles for Models

Font Styles for Models

Font Styles Overview

Configure font options for blocks, lines, and annotations.

Configuration

New models use these styles. For details, see “Specify Fonts in Models”.

1 Use the lists to specify font types, styles, and sizes to apply to new block diagrams.
2 Close OK.

20-33

Simulink Mask Editor

+ “Mask Editor Overview” on page 21-2

+ “Dialog Control Operations” on page 21-30

+ “DataTypeStr Parameter” on page 21-34

* “Design a Mask Dialog Box using the Parameters & Dialog Pane” on page 21-38

2] Simulink Mask Editor

Mask Editor Overview

In this section...

“Icon & Ports Pane” on page 21-3
“Parameters & Dialog Pane” on page 21-12
“Initialization Pane” on page 21-22
“Documentation Pane” on page 21-25
“Additional Options” on page 21-28

A mask i1s a custom user interface for a block that hides the block's contents, making it
appear to the user as an atomic block with its own icon and parameter dialog box.

The Mask Editor dialog box helps you create and customize the block mask. The Mask
Editor dialog box opens when you create or edit a mask. You can access the Mask
Editor dialog box by any of these options:

To create mask,

* Click Diagram > Mask > Create Mask.
* Right-click the block and select Mask > Create Mask.

To edit mask,

+ Click Diagram > Mask > Edit Mask.
* Right-click the block and select Mask > Edit Mask.

Note: You can also use the keyboard shortcut CTRL + M to open Mask Editor.

The Mask Editor dialog box contains a set of tabbed panes, each of which enables you
define a feature of the mask. These tabs are:

* “Icon & Ports Pane” on page 21-3: To create block mask icons.

+ “Parameters & Dialog Pane” on page 21-12: To design mask dialog boxes.

+ “Initialization Pane” on page 21-22: To initialize a masked block using MATLAB
code.

21-2

Mask Editor Overview

* “Documentation Pane” on page 21-25: To add description and help about the block
mask.

Note: For information on creating and editing a block mask from command line, see
“Control Masks Programmatically”.

Icon & Ports Pane

+ “Options” on page 21-5
+ “Preview” on page 21-10

* “Icon drawing commands” on page 21-10

The Icon & Ports pane helps you to create a block icon that contains descriptive text,
state equations, image, and graphics.

21-3

2] Simulink Mask Editor

1 Mask Editor : Subsystem EIIEI
Icon & Ports | Parameters & Dialog | Initialization | Decumentation
Options Icon drawing commands
Block frame
Visible -
Icon transparency
iOpaque Vi
Icon units
:Autoscale v:

Icon rotation

Fixed v
Port rotation

Default v
Run Initialization

on —

Preview

Mo Preview Available

Unmask | | Preview | [OK)| Cancel || Help |[Apply |

The Icon & Ports pane is divided into these sections:

+ “Options” on page 21-5: Provides a list of different controls that can be applied on
the mask icon.
+ “Preview” on page 21-10: Displays the preview of the block mask icon.

* “Icon drawing commands” on page 21-10: Enables you to draw mask icon by using
MATLAB code.

214

Mask Editor Overview

Note: You can create static and dynamic block mask icon. For more information, see
“Draw Mask Icon” and slexMaskDisplayAndInitializationExample.

Options

Options available in the left pane are a list of controls that allow you to specify
attributes on the mask icon. These options are,

+ “Block frame” on page 21-5

* “Icon transparency” on page 21-5

* “Icon units” on page 21-6

* “Icon rotation” on page 21-7

* “Port rotation” on page 21-7

* “Run Initialization” on page 21-9
Block frame

The block frame is the rectangle that encloses the block. You can choose to show or
hide the frame by setting the Block Frame parameter to Visible or Invisible. The
default is to make the block frame visible. For example, this figure shows visible and
invisible block frames for an AND gate block.

(B)
R
—
Visible Invisible

Icon transparency

The icon transparency can be set to Opaque, Opaque with ports, or Transparent,
based on whether you want to hide or show what is underneath the icon. The default
option Opaque hides information such as port labels. The block frame is displayed for a
transparent icon, and hidden for the opaque icon.

—»]
I AND | —
—* D "
Opaque Transporent

For a subsystem block, if you set the icon transparency to Opaque with ports the port
labels are visible.

21-5

2] Simulink Mask Editor

21-6

A ini Cut1 [
Subs=yzem Block
A inz Qut? [r

Opaque with ports

Note: If you set the icon transparency to Transparent, Simulink does not hide the block
frame even if you set the Block Frame property to Invisible.

Icon units

This option controls the coordinate system used by the drawing commands. It applies
only to the plot, text, and patch drawing commands. You can select from among these
choices: Autoscale, Normalized, and Pixel.

ma (2, mas) 11 block width, blods heighl
min (2, min(}) a, 00
Autoscale Mormalized Pixel

+ Autoscale scales the icon to fit the block frame. When the block is re-sized, the icon
is also re-sized. For example, this figure shows the icon drawn using these vectors:

X=[023409]; Y=1[462358];

v

The lower-left corner of the block frame is (0,3) and the upper-right corner is (9,8).
The range of the x-axis is 9 (from 0 to 9), while the range of the y-axis is 5 (from 3 to
8).

+ Normalized draws the icon within a block frame whose bottom-left corner is (0,0)
and whose top-right corner is (1,1). Only X and Y values between 0 and 1 appear.
When the block is re-sized, the icon is also re-sized. For example, this figure shows the
icon drawn using these vectors:

X=1[.0.2.3.4.9];Y=I[.4.6.3.5.8];

Mask Editor Overview

A

* Pixel draws the icon with X and Y values expressed in pixels. The icon is not
automatically re-sized when the block is re-sized. To force the icon to re-size with the
block, define the drawing commands in terms of the block size.

Icon rotation

When the block is rotated or flipped, you can choose whether to rotate or flip the icon or
to have it remain fixed in its original orientation. The default is not to rotate the icon.
The icon rotation is consistent with block port rotation. This figure shows the results of
choosing Fixed and Rotates icon rotation when the AND gate block is rotated.

vy Yy

D, U
I !

Fixe Rotates

Port rotation

This option enables you to you specify a port rotation type for the masked block. The
choices are:

+ default

Ports are reordered after a clockwise rotation to maintain a left-to-right port
numbering order for ports along the top and bottom of the block and a top-to-bottom
port numbering order for ports along the left and right sides of the block.

+ physical
Ports rotate with the block without being reordered after a clockwise rotation.

The default rotation option is appropriate for control systems and other modeling
applications where block diagrams typically have a top-down and left-right orientation. It
simplifies editing of diagrams, by minimizing the need to reconnect blocks after rotations
to preserve the standard orientation.

21-7

2] Simulink Mask Editor

21-8

Similarly, the physical rotation option is appropriate for electronic, mechanical,
hydraulic, and other modeling applications where blocks represent physical components
and lines represent physical connections. The physical rotation option more closely
models the behavior of the devices represented (that is, the ports rotate with the block as
they would on a physical device). In addition, the option avoids introducing line crossings
as the result of rotations, making diagrams easier to read.

For example, the following figure shows two diagrams representing the same transistor
circuit. In one, the masked blocks representing transistors use default rotation and in the
other, physical rotation.

BN A e A

PHP1 PHF2 PMF3 PHP4

o— o—
4 4
— —
NPHM1 @ MNPMN3 @
-} -
1] 1]

MPMZ NPM4

Default Rotation Physical Rotaticn

Both diagrams avoid line crossings that make diagrams harder to read. The next figure
shows the diagrams after a single clockwise rotation.

Mask Editor Overview

1 .
PHP1 ;@\ PHF2 /@\ PHMAZ2 /é\n PHP4 /@\
L I

MPMN1

/@\ NPM3 /@\
Ay T

MFHZ /@\ HFH4 @\

L1 - N

Default Rotation Physical Rotation

Note: The rotation introduces a line crossing the diagram that uses default rotation

but not in the diagram that uses physical rotation. Also that there is no way to edit the
diagram with default rotation to remove the line crossing. See “Flip or Rotate a Block” for
more information.

Run Initialization

The Run initialization option enables you to control the execution of the mask
initialization commands. The choices are:

+ Off (Default): Does not execute the mask initialization commands. When the
mask drawing commands do not have dependency on the mask workspace, it is
recommended to specify the value of Run initialization as Off. Setting the value to
Off helps in optimizing Simulink performance as the mask initialization commands
are not executed.

+ On: Always executes the mask initialization commands. When this option is specified,
the mask initialization commands are executed before executing the mask drawing

21-9

2] Simulink Mask Editor

commands irrespective of the mask workspace dependency of the mask drawing
commands.

* Analyze: Executes the mask initialization commands only if there is mask workspace
dependency. When this option is specified, Simulink executes the mask initialization
commands before executing the mask icon drawing commands. The Analyze option
is for backward compatibility and is not recommended otherwise. It is recommended
that the Simulink models from R2016b or before are upgraded using the Upgrade

Advisor.

For more information, see slexMaskDrawingExamples.

Preview

This section displays the preview of block mask icon. Block mask preview is available

only if the mask contains an icon drawing.

When you add an icon drawing command and click Apply, the preview image refreshes

and is displayed in the Preview section of Icon & Ports pane.

Icon drawing commands

The Icon drawing commands text box available in the center pane enables you to add
code to draw the block icon. You can use the list of commands mentioned in the Mask

icon drawing commands tables to draw a block icon.

Mask icon drawing commands

Drawing Command | Description Syntax Example Preview
color Change drawing color("red®);
color of subsequent |port_label ("outpy| 7=
mask icon drawing
commands
disp Display text on the |disp(“Gain®)
masked icon. Gan
dpoly Display transfer dpoly([O O 1], 7
function on masked |[1 2 1], "z7) T
icon
droots Display transfer droots([-11. [-2| .,
function on masked |-3], 4) porr e
icon :

21-10

Mask Editor Overview

Drawing Command | Description Syntax Example Preview

fprintf Display variable fprintf("Sum =
text centered on %d®, 7) M=y
masked icon

image Display RGB image |image("b747_jpg*)
on masked icon ﬁ

Note: To add mask
icon from the user
interface, click
Mask > Add Mask
Icon in the context
menu.

Add mask icon image
Description

Add and manage icon imag

Select mask icon image:

Icon transparency: E

L ¢

patch Draw color patch of |patch(JO 10 20
specified shapeon |30 30 0], [10 30 ‘
masked icon 20 25 10 10],[1
0 oD
plot Draw graph plot([10 20 30 T
connecting series of |40], [10 20 10 f X

points on masked 15]) v |

icon
port_label Draw port label on |port_label ("outpu
masked icon 1, "xy"™) “p

21-11

2] Simulink Mask Editor

21-12

Drawing Command | Description Syntax Example Preview

text Display text at text(5,10,
specific location on |"Gain")
masked icon

Note: You must
select Pixels in the
Icon units box.

Note: Simulink does not support mask drawing commands within anonymous functions.

The drawing commands execute in the same sequence as they are added in the Icon
drawing commands text box. Drawing commands have access to all variables in the
mask workspace. If any drawing command cannot successfully execute, the block icon

EL

displays question masks

The drawing commands execute after the block is drawn in these cases:

* Changes are made and applied in the mask dialog box.
* Changes are made in the Mask Editor.

+ Changes are done to the block diagram that affects the block appearance, such as
rotating the block.

Parameters & Dialog Pane

+ “Controls” on page 21-15

* “Dialog box” on page 21-18

* “Property editor” on page 21-19

The Parameters & Dialog pane enables you to design mask dialog boxes using the
dialog controls in the Parameters, Display, and Action palettes.

Mask Editor Overview

2 Mask Editor : Gain

Icon & Ports| Parameters & Dialog | Initialization | Documentation

Controls
= Parameter

Edit

@ Check box
Popup
Combo box
@ Radio button
[s!] DataTypeStr
Min

Max

“H Slider

A0F Dial

[Spinbox
é;] Promote
§f] Promote all

= Display

=1 Group box
(3 Tab

CollapsiblePanel

Panel
A Text
tﬁImage

= Action
c-” Hyperlink

@ Button

Dialog box Property editor
El Properties

Type Prompt Mame
EH;] %< MaskType>» DescGroupWar
PORA Yo« MaskDescription> DescTextVar

Drag or Click items in left palette to add to dialeg.
Use Delete key to remaove items from dialog.

Tutorial: Parameters and Dialog Pane

= Dialog

El Layout

Mame ParameterGroupVar
Prompt Simulink:studio:Toal...
Type groupbox

Enable
Visible

Item location New row -

Unmask Preview

| QK H Cancel ” Help H Apply]

The Parameters & Dialog pane divided into these sections:

Parameter & Dialog Pane

Sub-Section Description

Section Section Description | Sub-Section
Controls are
“Controls” on elements in a mask Parameter
page 21-15 dialog box that users

can interact with to

Parameters are user inputs
that take part in simulation.
The Parameters palette
has a set of parameter

21-13

2] Simulink Mask Editor

21-14

Section Section Description Sub-Section Sub-Section Description
add or manipulate dialog controls that you can
data. add to a mask dialog box.

Controls on the Display
palette allow you to group
Display dialog controls in the mask
dialog box and display text
and images
Action controls allow you
to perform some actions in
. the mask dialog box. For
Action .
example, you can click a
hyperlink or a button in the
mask dialog box.
You can click or
drag and drop dialog
“Dialog box” on controls from the
page 21-18 palettes to the B B
Dialog box to create
a mask dialog box.
The Property Defines basic information
editor allows you Proverties | O™ all dialog controls, such
to view and set p as Name, Value, Prompt,
the properties for and Type.
gl.e Plarameters, Defines how a mask dialog
AISP ay, and) Attributes control is interpreted.
“Property editor” Ctlon Contro S Attributes are I‘elated Only
on page 21-19 to parameters.
Defines how dialog controls
Dialog are displayed in the mask
dialog box.
Defines how dialog controls
Layout are laid out on the mask

dialog box.

Mask Editor Overview

Controls

The controls section is sub divided into Parameters, Display, and Action sections. The
Controls Table lists out the different controls and their description.

Controls Table

Controls

Description

Parameters

=
H

Edit

Allows you to enter a
parameter value by typing it
into the field.

ey

Check box

Accepts a Boolean value.

(il

Popup

Allows you to select a
parameter value from a list of
possible values.

Combo box

Allows you to select a
parameter value from a list of
possible values. You can also
type a value either from the
list or from outside of the list.
The values provided for the
Combo box parameter are
not evaluated.

For more information, see
the Combo box example in
slexMaskParameterOptionsE;

Radio button

Allows you to select a
parameter value from a
list of possible values. All
options for a radio button are
displayed on the mask dialog.

m'y

Slider

Allows you to slide to values
within a range defined by
minimum and maximum
values. You can type a

xample.

21-15

2] Simulink Mask Editor

21-16

Controls

Description

number or a variable name
as value for the slider.

You can also control the
slider range dynamically.

For more information, see
slexMaskParameterOptionsE;

Dial

Allows you to dial to values
within a range defined
by minimum and maximum
values. You can type a
number or a variable name as
value for the dial.

You can also control the
dial range dynamically.
For more information, see
slexMaskParameterOptionsE;

Spinbox

Allows you to spin through
values within a range defined
by minimum and maximum
values. You can specify a step
size for the values.

B!

DataTypeStr

Enables you to specify a data
type for a mask parameter.
You can associate the Min,
Max, and Edit parameters
with a data type parameter.
For more details, see
“DataTypeStr Parameter” on
page 21-34.

Min

Specifies a minimum value
for the DataTypeStr
parameter.

Max

Specifies a maximum value
for the DataTypeStr
parameter.

xample.

xample.

Mask Editor Overview

Controls

Description

Promote parameter

Allows you to selectively
promote block parameters
from underlying blocks to
the mask. Click the Type
options field to open
the Promoted Parameter
Selector dialog box. In this
dialog box, you can select the
block parameters that you
want to promote. Click OK to
close it.

Promote all

Allows you to promote all
underlying block parameters
to the mask. When you
promote all parameters, the
promote operation deletes
parameters that have been
promoted previously.

Display

Panel

Container to group of dialog
controls. You use a Panel
for logical grouping of dialog
controls.

Group box

Container to group other
dialog controls and containers
in the mask dialog box.

Tab

Tab to group dialog controls
in the mask dialog box. A
tab is contained within a tab
container. A tab container can
have multiple tabs.

CollapsiblePanel

Container to group dialog
controls similar to Panel.
You can choose to
expand or collapse the

21-17

2] Simulink Mask Editor

21-18

Controls

Description

CollapsiblePanel dialog
controls.

For more information, see the
Collapsible Panel example in
Dialog Layout Options.

Text displayed in the mask

A e dialog box.
5 Image displayed in the mask
':ﬂ lssge dialog box.
Action

{‘? Hyperlink

Hyperlink text displayed on
the mask dialog box.

@ Button

Button controls on the

mask dialog box. You can
program button for specific
actions. You can also add an
image on a button controls.
For more information, see
slexMaskParameterOptionsE;

Dialog box

You can build a hierarchy of dialog controls by dragging them from a Controls section
to the Dialog box. You can also click the palettes on the Controls section to add the
required control to the Dialog box. You can add a maximum of 32 levels of hierarchy in

the Dialog box.

The Dialog box displays three fields: Type, Prompt, and Name.

* The Type field shows the type of the dialog control and cannot be edited. It also
displays a sequence number for parameter dialog controls.

* The Prompt field shows the prompt text for the dialog control.

+ The Name field is auto-populated and uniquely identifies the dialog controls. You can
choose to add a different value (valid MATLAB name) in the Name field.

The Parameter controls are displayed in light blue background whereas the Display
and Action controls are displayed in white background on the Dialog box.

Mask Editor Overview

You can move a dialog control in the hierarchy, you can copy and paste a dialog control,
you can also delete a node. For more information, see “Dialog Control Operations” on

page 21-30.

Property editor

The Property editor allows you to view and set the properties for Parameter,
Display, and Action dialog controls. The Property editor for Parameter is shown

below:

Property editor

= Properties
Mame Parameterl
Value 0
Prompt

Type [spinl:u:ux

Minimum]
Maximum 100
Step size 1
Tooltip

El Attributes
Evaluate
Tunable
Read only
Hidden
Mever save

I Dialog
Enable
Visible
Callback

=l Layout

OOoO&

M E

Item location Mew row

N

Prompt location [LEI"t

4

Horizontal Stret...

21-19

2] Simulink Mask Editor

21-20

You can set the following properties for Parameter, Action, and Display dialog
controls. For more information, see the Property editor table.

Property editor
Property Description
Properties

Uniquely identifies the dialog control in the mask dialog

Name box. The Name property must be set for all dialog
controls.

Value Value of the Parameter dialog control. The Value
property applies only to the Parameter dialog controls.
Label text that identifies the parameters in a mask dialog

Prompt box. The Prompt property applies to all dialog controls
except Panel and Image dialog control.

Type Type of the dialog control. You can change the Type field

B only for the Parameter dialog controls.
B Allows you to specify if the collapsible panel dialog control

is expanded or collapsed, by default.

Type options

The Type options property allows you to set specific
Parameter properties. The Type options property
applies to the Popup, Radio button, DataTypeStr, and
Promoted parameters.

File path

You can add an image to a mask using the Image dialog
control. You can also display an image on a Button dialog
control. In either case, provide the path to the image

in the File path property that is enabled for these two
dialog controls. For the Button dialog control, specify an
empty character vector for the Prompt property in order
for the image to be displayed.

Word wrap

The Word wrap property enables word wrapping for
long text. The Word wrap property applies only for Text
dialog control.

Maximum and Minimum

The Maximum and Minimum properties enable you to
specify a range for controls like Spinbox, Slider, and
Dial.

Mask Editor Overview

Property

Description

Step size

Allows you to specify a step size for the values. This
property applies only for Spinbox dialog control.

Tooltip

Allows you to specify a tooltip for the selected dialog
control type. The tooltip is visible when you hover the
cursor over a dialog control on the mask dialog box. You
can add tooltips for all dialog controls type except for
Group box, Tab, CollapisiblePanel, and Panel.

Attributes

Evaluate

Simulink uses the value of a mask parameter as you type
it in the mask dialog box, or it can evaluate what you
specify and use as the result of the evaluation. Select the
Evaluate option for a parameter to specify parameter
evaluation (the default). Clear the option to suppress
evaluation.

Tunable

By default, you can change a mask parameter value
during simulation. To prohibit changing of parameter
value during simulation, clear the Tunable option. If the
masked parameter does not support parameter tuning,
Simulink ignores the Tunable option setting of a mask
parameter. Such parameters are then disabled on the
Mask Editor. We can specify the type of parameter where
tunable is disabled. For information about parameter
tuning and the blocks that support it, see “Tune and
Experiment with Block Parameter Values”.

Read only

Indicates that the parameter cannot be modified.

Hidden

Indicates that the parameter must not be displayed in the
mask dialog box.

Never save

Indicates that the parameter value never gets saved in
the model file.

Dialog box

Enable

By default Enable is selected. If you clear this option,
the selected control becomes unavailable for edit. Masked
block users cannot set the value of the parameter.

21-21

2] Simulink Mask Editor

Property Description
.. The selected control appears in the mask dialog box only
Visible chp ..
if this option is selected.
MATLAB code that you want Simulink to execute when
Callback a user applies a change to the selected control. Simulink

uses the base workspace to execute the callback code.

Layout

Item location

Allows you to set the location for the dialog control to
appear in the current row or a new row.

Prompt location

Allows you to set the prompt location for the dialog
control on either the top or to the left of the dialog control.

You cannot set the Prompt location property for Check
box, Dial, DataTypeStr, Collapsible Panel and
Radiobutton.

Orientation

Allows you to specify horizontal or vertical orientation for
sliders and radio buttons.

Horizontal Stretch

If this option is selected, the controls on the mask dialog
box stretch horizontally when you resize the mask
dialog box. By default, Horizontal Stretch check box is
selected.

For more information, see Horizontal Stretch Property.

Initialization Pane

* “Dialog variables” on page 21-24

* “Initialization commands” on page 21-24

+ “Allow library block to modify its contents” on page 21-24

* “Rules for Initialization commands” on page 21-25

The Initialization pane allows you to add MATLAB commands that initialize the

masked block.

21-22

Mask Editor Overview

2| Mask Editor : Gain =N =
| Icon & Ports | Parameters & Dialog | Initialization | Documentation
Dialog variables Initialization commands
Allow library block to modify its contents
Unmask Preview | 0K | [Cancel] [Help] [Apply]

When you open a model, Simulink locates the visible masked blocks that reside at the
top level of the model or in an open subsystem. Simulink only executes the initialization
commands for these visible masked blocks if they meet either of the following conditions:

* The masked block has icon drawing commands.

Note: Simulink does not initialize masked blocks that do not have icon drawing

commands, even if they have initialization commands.

21-23

2] Simulink Mask Editor

21-24

+ The masked block belongs to a library and has the Allow library block to modify
its contents enabled.

Initialization commands for all masked blocks in a model run when you:

+ Update the diagram

+ Start simulation

+ Start code generation

* Click Apply on the dialog box

Initialization commands for an individual masked block run when you:

* Change any of the mask parameters that define the mask, such as MaskDisplay and
MaskInitialization, by using the Mask Editor or the set_param command.

* Rotate or flip the masked block, if the icon depends on the initialization commands.

+ Cause the icon to be drawn or redrawn, and the icon drawing depends on
initialization code.

* Change the value of a mask parameter by using the block dialog box or the
set_param command.

+ Copy the masked block within the same model or between different models.
The Initialization pane contains the controls described in this section.
Dialog variables

The Dialog variables list displays the names of the dialog controls and associated mask
parameters, which are defined in the Parameters & Dialog pane. You can also use the
list to change the names of mask parameters. To change a name, double-click the name
in the list. An edit field containing the existing name appears. Edit the existing name
and click Enter or click outside the edit field to confirm your changes.

Initialization commands

Enter the initialization commands in this field. You can enter any valid MATLAB
expression, consisting of MATLAB functions and scripts, operators, and variables defined
in the mask workspace. Initialization commands run in the mask workspace, not the
base workspace.

Allow library block to modify its contents

This check box is enabled only if the masked subsystem resides in a library. Checking
this option allows the block's initialization code to modify the contents of the masked

Mask Editor Overview

subsystem by adding or deleting blocks and setting the parameters of those blocks.
Otherwise, an error is generated when a masked library block tries to modify its contents
in any way.

Rules for Initialization commands

Following rules apply for mask initialization commands:

* Do not use initialization code to create mask dialogs whose appearance or control
settings change depending on changes made to other control settings. Instead, use the
mask callbacks provided specifically for this purpose.

* Avoid prefacing variable names in initialization commands with MaskParam_L_ and
MaskParam_M . These specific prefixes are reserved for use with internal variable
names.

* Avoid using set_param commands to set parameters of blocks residing in masked
subsystems that reside in the masked subsystem being initialized. See “Set Up Nested
Masked Block Parameters” for details.

Documentation Pane

The Documentation pane enables you to define or modify the type, description, and
help text for a masked block.

21-25

2] Simulink Mask Editor

2| Mask Editor : Gain =N =
|Ic0n&Por’rs Parameters & Dialog | Initialization | Documentation

Type

Description

Help

Unmask Preview | 0K H Cancel ” Help H Apply]

Type

The mask type is a block classification that appears in the mask dialog box and on all
Mask Editor panes for the block. When Simulink displays a mask dialog box, it suffixes
(mask) to the mask type. To define the mask type, enter it in the Type field. The text
can contain any valid MATLAB character, but cannot contain line breaks.

21-26

Mask Editor Overview

Description

The mask description is summary help text that describe the block's purpose or function.
By default, the mask description is displayed below the mask type in the mask dialog
box. To define the mask description, enter it in the Description field. The text can
contain any legal MATLAB character. Simulink automatically wraps long lines. You can
force line breaks by using the Enter key.

Help

The Online Help for a masked block provides information in addition to that provided by
the Type and Description fields. This information appears in a separate window when
the masked block user clicks the Help button on the mask dialog box. To define the mask
help, type one of these in the Help field:

+ URL specification

* web or eval command

+ Literal or HTML text

Provide an URL

If the first line of the Mask help field is an URL, Simulink passes the URL to your
default web browser. The URL can begin with http:, www:, File:, ftp:, or mailto:.
Examples:

http://www.mathworks.com
file:///c:/mydir/helpdoc.html

Once the browser is active, MATLAB and Simulink have no further control over its
actions.

Provide a web Command

If the first line of the Mask help field is a web command, Simulink passes the command
to MATLAB, which displays the specified file in the MATLAB Online Help browser.
Example:

web([docroot "/MyBlockDoc/*" get_param(gch, "MaskType®) ".html"])

See the MATLAB web command documentation for details. A web command used for
mask help cannot return values.

21-27

2] Simulink Mask Editor

21-28

Provide an eval Command

If the first line of the Mask help field is an eval command, Simulink passes the
command to MATLAB, which performs the specified evaluation. Example:

eval (" '"Word My_Spec.doc")

See MATLAB eval command documentation for details. An eval command used for
mask help cannot return values.

Provide Literal or HTML Text

If the first line of the Mask help field is not an URL, or a web or eval command,
Simulink displays the text in the MATLAB Online Help browser under a heading that is
the value of the Mask type field. The text can contain any legal MATLAB character, line
breaks, and any standard HTML tag, including tags like img that display images.

Simulink first copies the text to a temporary folder, then displays the text using the web
command. If you want the text to display an image, you can provide a URL path to the
image file, or you can place the image file in the temporary folder. Use tempdir to find
the temporary folder that Simulink uses for your system.

Additional Options

Following buttons appear on the Mask Editor:

* The Preview button applies the changes you made, and opens the mask dialog box.
* The OK button applies the mask settings and closes the Mask Editor.

+ The Cancel button closes the Mask Editor without applying any changes you made
to the mask.

* The Help button displays online information about the Mask Editor.
* The Apply button applies the mask settings and leaves the Mask Editor open.

* The Unmask button deletes the mask and closes the Mask Editor. To create the
mask again, select the block and choose Mask > Create Mask.

More About

. “Masking Fundamentals”

. “Create a Simple Mask”

Mask Editor Overview

“Block Masks”

Creating a Mask: Parameters and Dialog Pane (4 min, 19 sec)

21-29

2] Simulink Mask Editor

Dialog Control Operations

In this section...
“Moving dialog controls in the Dialog box” on page 21-30

“Cut, Copy, and Paste Controls” on page 21-31
“Delete nodes” on page 21-31

“Error Display” on page 21-31

Moving dialog controls in the Dialog box

You can move dialog controls up and down in the hierarchy using drag and drop. When
you drag a control, a cue line indicates the level in the hierarchy. Based on the type of
dialog control, you can drag and drop controls as indicated:

* Drag and drop on the container dialog control in the Dialog box

* Drop before it: Adds the dialog control as a sibling before the current dialog
control.

€ 5 groupbox 2

Drop on it: Adds to the container as a child at the end.

+ Drop after it: Adds the dialog control as a sibling after the current dialog control.

* Drag and drop on the non-container dialog control in the Dialog box

* Drop before it: Adds the dialog control before the current dialog control.

-[31] edit
C Lk
it checkbox

21-30

Dialog Control Operations

+ Drop after it: Adds the dialog control after the current dialog control.

i checkbox

* Drag and drop into Dialog box blank area

* The element is added to the root level node.

Cut, Copy, and Paste Controls

You can cut, copy, and paste dialog controls on the Dialog box using the context menu.

Ctrl+ X

4 Cut

éj popup Gair: s lication #4
-] DataTypeStr Data Param| = CoPy CtI+*C hoten #5
1<) Minimum Min2 B Paste Ctl+V Leters 45

Delete nodes

> Delete

Right-click the control that you want to delete in the Dialog box. Select,
from the context menu. For example, to delete a Check box dialog control, right-click
and select Delete:

Cut Chrl+X
Copy Ctrl+C

) o<

(P

Paste Ctrl+V

. Delete

You can also use the Delete menu option to delete a dialog control.

Error Display

If you have errors in parameters names, such as, duplicate, invalid parameter names,
or empty names, the mask editor displays the parameter names in red outline. When

21-31

2] Simulink Mask Editor

you edit the parameters to fix errors, the modified fields are identified by a yellow

background.

Parameter2 #, _ Error: Duplicate

Parameter? #3 parameter
names

Multiplication #4

Edited
Parameterd #5

parameters to fix

Parameters #5 Errors

Dialog box

Type Prompt Mame

=S | %o MaskType> DescGroupVar
A %ee MaskDescription > DescTextVar

=3 | 51 ParameterGroupVar
-0 #1 edit pararmeter IP‘arameterl 2 |
-5 22 edit parameter [pararmetert |
-0 #3 edit parameter a
- A text control A 6
(;‘J hyperlink contrel control3 4
f'? hyperlink control Control3
510 24 edit parameter b 3b
f'? hyperlink control II::I—I

=N G2 antainard §

éj 5 *# Errors @

Q Following names are duplicate:

Drag of & Pararmeterl
Use Del & parameterl
&b

21-32

Dialog Control Operations

1 Duplicate Parameter, Display, and Action control names are not allowed.

2 Parameter names must be unique and are case insensitive. Names varying
only in lowercase and uppercase letters, are treated as duplicates. For example,
Parameterl and parameterl are not allowed.

3 Parameter, Display, and Action control names can be same as long as different
lowercase and uppercase characters are used. For example, while a and A are
allowed, b and b are not allowed.

4 Action and Display control names are case sensitive. For example, while Control3
and control3 are allowed, control3 and control3 are not allowed.

See Also
“Block Masks”

21-33

2] Simulink Mask Editor

DataTypeStr Parameter

21-34

A data type parameter enables you to specify a data type for a mask parameter. A data
type parameter is particularly useful when you include a masked block in a library that
you define. For more information, see “Mask Linked Blocks”.

To control the output data type of blocks by using mask parameters, consider promoting
block parameters instead of using DataTypeStr mask parameters. For example, you
can promote the Output data type parameter of one or more Constant blocks to a
mask parameter. You can then control the data types by changing the value of the
mask parameter. For more information about promoting block parameters to a mask
parameter, see “Promote Parameter to Mask”.

To specify the data type options, click Type options in the Property editor. It opens
the Type Options Editor dialog. In the Type options dialog box, these tabs appear:
+ Inherit rules — Specify inheritance rules for determining the data types.

* Built-in types — Specify one or more built-in Simulink data types, such as double
or int8.

+ Fixed-point — Specify the scaling and signed modes for a fixed-point data type.
+ User-defined — Specify a bus or enumerated (enum) data type, or both.

+ Associations — Associate a data type parameter with a Min, Max, and Edit
parameter.

The figure shows a data type control definition for an Output Data Type prompt that
allows your masked block users to select any built-in type. To restrict the choices to built-
in data types, do not select any check boxes on the Fixed-point and User-defined tabs.

DataTypeStr Parameter

| Type Options Editor : 'Parameterf’ of block Product u

Description

Specify the data type(s) for the selected parameter, To specify the data type options
use one or more of Inherit rules, Built-in types, Fixed-point, User-Defined, Asseciation
tabs.

Data type options

| Inherit rulaslé Built-in t}‘PESﬂ Fixed-point | User-defined | Associations

»

double
single
intd
uintd
intl6
uintle
int32
uint32 —
boolean

m

5

Specifying Inheritance Rules

To specify one or more inheritance rules for the data type control, on the Inherit rules
tab, select the appropriate check boxes.

ﬂ Type Options Editor : 'Parametert’ of block Product u

Description

Specify the data type(s) for the selected parameter. To specify the data type options
use one or more of Inherit rules, Built-in types, Fixed-point, User-Defined, Association
tabs.

Data type options

EInherit fU|ES§| Built-in typa:l Fixed-point | User-defined | Associations

1 Commen Simulink rules

; [Inherit: aute

[Inherit: Inherit via internal rule

[] Inherit: Inherit via back propagation
[T] Inherit: Same as input

[T] Inherit: Same as first input

[] Inherit: Same as second input
Advanced Simulink rules

21-35

2] Simulink Mask Editor

By default, the Inherit rules tab includes two groups of rules:

* Common Simulink rules
+ Advanced Simulink rules
The Common Simulink rules are inheritance rules that apply to many blocks in the

Simulink library. The Advanced Simulink rules are inheritance rules that apply to one or
only a few Simulink blocks.

If there are any custom inheritance rules registered on the MATLAB search path, then
the Inherit rules tab also includes a third group of rules: Custom Simulink rules.

Specifying a Fixed-Point Data Type

Select the parameter on the Parameter palette.
2 Inthe Type Options Editor, click the Fixed-point tab.

3 Select the appropriate scaling and signed mode check boxes. If you do not select a
mode, then a user cannot choose a fixed-point data type.

4 Click the Associations tab.
Your users can use the association when specifying a fixed-point data type. For a

value or value range for a signal, the association can help with the selection of the
user select the data type with the best precision.

5 Specify the minimum, maximum, and value for the fixed-point data.
Specifying an Enumerated Data Type

1 Select the parameter on the Parameter palette.

2 Inthe Type Options Editor, click the User-defined tab.
3 Select the Enumerated check box.

Specifying a Bus Data Type

1 Select the parameter on the Parameter palette.
2 In the Type Options Editor, click the User-defined tab.
3 Select the Bus check box.

The outputs of some blocks, such as Constant and From Workspace blocks, can use
bus and nonbus data types. To control the output data type of these blocks by using a

21-36

DataTypeStr Parameter

DataTypeStr mask parameter, write mask initialization code in the Initialization
pane of the mask editor. The code must:

+ Determine whether the value of the mask parameter is a bus type.

+ If the value is a bus type, set the output data type of the target blocks by adding a
Bus: prefix to the value. If the value of the mask parameter is not a bus type, set the
output data type of the target blocks to the value.

For example, suppose you mask a Constant block. In the mask, you create a
DataTypeStr parameter named FlexibleTypeParam. Under the mask, in the
Constant block dialog box, you set the value of the Output data type parameter to
FlexibleTypeParam. To use a bus type as the value of FlexibleTypeParam, your
mask initialization code must modify the OutDataTypeStr block parameter by adding a
Bus: prefix.

MaskDTPrmString = get_param(gcb, “FlexibleTypeParam®); % Get value of mask parameter
if strfind(MaskDTPrmString, "Bus:") % Determine if mask parameter value is a bus type
set_param([gcb "/Constant®], “OutDataTypeStr®, ["Bus: ° "FlexibleTypeParam®]);
else
set_param([gcb "/Constant®], "OutDataTypeStr®, “FlexibleTypeParam®);
end

For more information about adding code to the Initialization pane of the mask editor,
see “Initialization Pane” on page 21-22.

Note: To avoid adding the initialization code, consider promoting the Qutput data type
parameter of the block to a mask parameter instead of using a DataTypeStr mask
parameter. For more information, see “Promote Parameter to Mask”.

Simulink enables the Evaluate option for data type controls. By default, you cannot
change DataTypeStr parameter on the Mask Editor.

See Also
“Block Masks”

21-37

2] Simulink Mask Editor

Design a Mask Dialog Box using the Parameters & Dialog Pane

This example shows how to create a mask dialog box using the Parameters & Dialog
pane of the Mask Editor. When you mask a block, you encapsulate the block logic and
create a custom interface for the block.

Consider a model containing a Subsystem block called AC system. This Subsystem
contains an air conditioning system.

View 1

Mask in1 Out

Im1 Ot
AC System

Apply a mask on this subsystem block.

21-38

Design a Mask Dialog Box using the Parameters & Dialog Pane

: Comment Out Ctrl+Shift+X
Analysis Code TJools Help
Delete Del
e i i
- E@ > - -
% u |][> @ Find Referenced Variables
Subsystem & Model Reference L4
Test Harness 4
Format 3
Rotate & Flip 4
Arrange 4
Mask ' Create Mask... Ctrl+M
Library Link Add Icon Image... I}
Signals & Ports N Mask Parameters...
Look Under Mask Ctrl+U
Reguirements Traceability 4
Linear Analysis b Create Model Mask... Ctrl+Shift+ M
Design Verifier 4
Loverage L4
Model Advisor 4
{ :) ’ In1 Fixed-Point Tool...
In1 C/C++ Code 4
A HOL Code 4
PLC Code 4
Polyspace 4
Block Parameters (Subsystern)
Properties...
Help

In the Mask Editor, use the Parameters & Dialogs pane to add controls on the mask
dialog box and manage the mask dialog box layout. Select items from the Controls
section to add parameters to the mask dialog box. Use the Property editor section to
edit parameter properties.

21-39

2] Simulink Mask Editor

2 Mask Editor : AC System E=n|EER %=

Icon & Ports | Parameters & Dialog | Initialization | Documentation
Controls Dialog box Property editor

Prompt Narne E Properties
Mame ParameterGroupVar

=l Parameter

Edit F<MaskType= DescGroupVar
@ Check box : Fa<MaskDescription:» DescTextVar

Popup S0 paametes PemmeteGrouplar ¥ groveber

(@) Radio butten = Dialog

] DataTypeStr Enable

Min Visible

Max B Layout

M Slider ftem location
A8 Dial

[E Spinbox
E;_] Promote

= Display

Prompt Sirmulink:studio: To...

=1 Group box

3 Tab
CollapsiblePanel
Panel

A Text

tﬁlmage

= Action

& Hyperlink Drag or Click items in left palette to add to dialog.
m Button Use Delete key to remove items from dialeg.

Preview | QK |’ Cancel ” Help H Apply]

For example, click Collapsible Panel from the Controls section.

Observe that a collapsible panel container is now added in the Dialog box section. In
the Prompt column, type a value to be displayed on the mask dialog box. For example,
Manufactures Information . The Name column gets populated automatically when a
control is added. You can change this value.

Edit the properties of collapsible panel in the Property editor. Click Preview to view
the mask dialog box as you build it.

21-40

Design a Mask Dialog Box using the Parameters & Dialog Pane

-

Y Mask Editor: AC System EI@
Icon & Ports| Parameters & Dialog | Initialization | Documentation

Controls Dialog box Property editor

= Parameter Type Prompt Name E Properties
Edit EH:I Yo MaskType> DescGroupWar MName Container3
[Check box CORA o= MaskDescription> DescTextVar Prompt Manufa.cturer sInf...
Popup Parameters ParameterGroupVar Type collapsiblepanel
@ roceburon | I e o | T S —
[fa?é] DataType5tr S Dialog
N Eljm.ble
Max Visible
U Slider = Layout .
1 Dial Item location MNew row
[E Spinbox
ég Promote

= Display

Block Parameters: AC System
21 Group box Subsystem (mask)
(3 Tab
ollapsiblePanel

j anel Parameters
A Text b Manufacturer's Information
tﬁ Image

£l Action [oK] [Cancel] ’ Help Apply
& Hyperlink Drag or Click items in left palette to add to dialog.
@ Button Use Delete key to remove items from dialeg.

’ OK] ’ Cancel] ’ Help] [Apply]

Unmask Previ Eﬁ

Similarly, you can add and configure various controls from the Mask Editor to build the
mask dialog box.

Observe the mask layout. Containers like group boxes, panels, collapsible panels, and
tabs group the controls together. Here, yellow represents Group Box, pink represents
Tab, and green represents the Collapsible Panel.

21-41

2] Simulink Mask Editor

2 Mask Editor : AC System o [@][= Block Parameters: AC System (=5
Jcon & Ports| Parameters & Dialog | Initialization | Documentation XYZ AC Control Panel » Manufacturer's information |
Controls Eoaleslons » | Property editor
[Parameter Type Prompt Name | E Properties

Edit | XYZ AC Centrol Panel Containerl7? Name Parameterl6 General Controls
A Control12 Value 5000
[# Check box ;
_— @ Power On Control2 Prompt Maximum cool... Main Controls ‘ Ancillary Controls
@ R : Fb tt & Control6 Type Humidity Auto Shut Down Time Temperature
adio button
1o arameter] ributes .
] DataTypestr #1 P 18 B Attribut 100.0
=] Manufacturer's information Container36 Evaluate
A This AC is manufactured by ... Control14 Tunable =
U Slider & User's manual Controld E Read enly]
4l Dial B (N/A) Container10 Hidden]
[Spinbox (] General Controls Containerll Never save] 0.0 1000 0.0 00 1000 |
21 promote ikl (N/A) Container22 B Dialog o 50 0 3
=03 Main Controls Containerb Enable . .
=l By A0 .. Humidity Parameterd Visible
121 Group b Pl i Callback
= Tn;up o <. Auto Shut Down Time Parameterl oL alloac + Advanced Controls
t
- g . E!Ih‘m ;Em:eratgra " I;aramatefs Itayoul tion [" Select the compressor based of the cooling capacity needed:
CollspsibleP: neilary Controls antainer | temlocation . TR G
i Panel Fan Controls Containerld Prompt loc... Required cooling capacity = (W*L*H*6) + (N*500)
A Text Parameter5 Horizontal ... Room Width (W) 133 % Room Length (L) 207 =
3
|8 Image Parameters Number of people (N)
B Action =120 Air Freshener Controls Container20 Room Height (H) 231 =l
! Parameterl5
& Hyperlink .
Q =3 Advanced Controls Containerl5 Minimum cooling capacity Maximum cooling capacity
Button A Select the compressor based ... Cantrol 00 000 |
A Dnmiendd cmnlime somncibe . Cmmbeanlt 5 o
[OK] [Cancel] [Help] [Apply]

The Button controls type is used to create the Power On button on the mask dialog box.
To manage the button placement, apply the Horizontal Stretch property. You can also
add callback code to be executed when the button is pressed.

21-42

Design a Mask Dialog Box using the Parameters & Dialog Pane

Y Mask Editor : AC System o [=][=]
Icon & Ports| Paremeters & Diclog | Initialization | Documentation
Controls LIk L = | Property editor
= Parameter Type Prempt Name (7| E Properties
it 2 X¥Z AC Control Panel Containerl7 Name Parameterl6
[Check box A Controll2 Value 5000
P Q Power On Control2 Prompt Maximum cool...
@} Radio button @ Control Type
2] DataTypestr M= Parameterld B Attributes
- Manufacturer's information Container36 Evaluate
A This AC is manufactured by ... Controll4 Tunable
4 Slider User's manual Controld £ Readonly @]
40 Dial (N7A) Containerl Hidden B
[Spinbox General Contrals Containerll Never save]
S Promote (N/A) Container22 E Dialog
Main Controls Containers Enable
& Display A .. Humidity Parametert Visible
=3 Group box | 4 . Auto Shut Down Time Parameterl Callback
[Tab 48 ... Temperature Parameterd Layout
2 CollzpsiblePanel =03 Ancillary Controls Container35 | || Hem location [Current row]
Panel 421 Fan Controls Containerld Prompt loc...
A Ted | ESFan Speed Parameter5 Horizontal ...
(& mage [swing On Parameter
Bl EI71 Air Freshener Controls Container20
) Parameterl5
(e ER Advanced Controls Containerl5
i LA Sellct the compressor based ... Controld
A Drmesivmnd mnmli;m ramosis . Cnmdenl1 S

Block Parameters: AC System

XYZ AC Control Panel » Manufacturer's information

General Controls

Main Controls ‘ Ancillary Controls
Humidity Auto Shut Down Time Temperature
L 100.0
=
0.0
54.0

m

¥ Advanced Controls
Select the compressor based of the cooling capacity needed:
Required cooling capacity = (W*L*H*6) + (N*500)

Room Width (W) 133 ~| Room Length (L) 207

Number of people (N)
Room Height (H) 231 = 4

Minimum cooling capacity Maximum cooling capacity

500 5000

[oK][Cancel H Help

] [ty |

The collapsible panel for Manufacturer's information contains Text and Hyperlink

control types.

21-43

2] Simulink Mask Editor

Y Mask Editor : AC System

Icon 8 Ports| Parameters & Dizlog | Initialization | Documentation

Controls Dizlog box
£ Parameter Type Prompt
Edit =g X¥Z AC Control Panel
[Check box
Popup Power On
(&) Radio button
|+] DataTypestr
Manufacturer's information
This AC is manufactured by ..
e User's manual
A Dial (N/A)
[T Spinbox 1 General Cantrols
Bl Promote CE] :
=03 Main Controls
& Display . Homidity
L2 Group box 4 ... Auto Shut Down Time
[= Tab 40 .. Temperature
“! CollapsiblePanel =09 Ancillary Controls
Panel =471 Fan Controls
an Spee
A Text Speed
|l 1mage [Hswing On
I EMT1 Air Freshener Controls
Advanced Controls
Gy Button

Select the compressor based ...

Mame
Containerl7
Contrel12
Control2
Control6
Parameterl®
Container36
Controll4
Contral9
Containerld
Containerll
Container22
Container
Parameterd
Parameterl
Parameterd
Container35
Containerl9
Parameter3
Parameterd
Container20
Parameterl>
Containerl3
Control8

m

Block Parameters: AC System
XYZ AC Control Panel

=]

¥ Manufacturer's information
This AC is manufactured by XYZ. In

Property editor the year 1940. For detailed working
= Properties information, refer to the User's
MName Parameterls manual.
Value 5000
Prompt Maximum coal...
Type W} General Controls
Bl Attributes Main Controls | Ancillary Controls ‘
Evaluate Humidity Auto Shut Down Time ~~ Temperature
Tunable o
Read only (=] - 100.0
Hidden (] -
Mever save [} =
E Dialeg N
Enable -
Visible 0.0 100.0 - 0.0 0.0 100.0
Callback 310 54.0 32.0
E Layout
tem location
Prampt loc... ¥ Advanced Controls
Horizontal ... Select the compressor based of the cooling capacity needed:
Required cooling capacity = (W*L*H*6) + (N®500)
Room Width (W) 133 < Room Length (L) 207 -

Room Height (H) 231

You can add MATLAB code as a callback for the hyperlink.

21-44

Number of people (M}
4

m

0K H Cancel][Help

] [Apply

Design a Mask Dialog Box using the Parameters & Dialog Pane

P "

Y Callback Editor : 'Controld' of block AC System ==

Descripticn

Enter MATLAE code to be executed when Hyperlink is clicked.
E.g. web www.rnathworks.com

Callback

| oK || Cancel

The General Controls section contains tabs to segregate and categorize information
under Main Controls and Ancillary Controls. The Main Controls tab uses Dials
and Slider to accept inputs for air conditioner parameter. You can edit the property of
dial and slider in the property editor section of Mask Editor to place them horizontally or
vertically.

21-45

2] Simulink Mask Editor

21-46

General Controls

Main Controls | Ancillary Controls
Humidity Auto Shut Down Time Temperature
-\._. ..-_I_I--.. .." T 1 I:I I:I . I:I -\._. ..-_I_I-] .
A P L,
— |_ —| |_
= J - - | _
N 4
0.0 100.0 0.0 0.0 100.0
50 20 33

The Ancillary Controls use Popup, Check Box, and Radio Buttons.

General Controls

Main Controls | Ancillary Controls

Fan Controls

Fan Speed [Ll:rw

[”] Swing On

Air Freshener Controls

) Green Apple @ Auqa Fresh) Woodland Mist

The Advanced Controls section is a collapsible panel that contains spinbox, minimum
and maximum parameters to accept inputs.

Design a Mask Dialog Box using the Parameters & Dialog Pane

* Advanced Controls
Select the compressor based of the cooling capacity needed:
Required cooling capacity = (W*L*H*&) + (N*500)

Room Width (W) 130 - Room Length (L) 205 =

Room Height (H) 231 > Number of people (N) 4

Minimum cooling capacity Maximum cooling capacity
500 5000
More About

. “Mask Editor Overview” on page 21-2

21-47

Concurrent Execution Window

* “Concurrent Execution Window: Main Pane” on page 22-2
* “Data Transfer Pane” on page 22-6

* “CPU Pane” on page 22-11

+ “Hardware Node Pane” on page 22-13

* “Periodic Pane” on page 22-16

+ “Task Pane” on page 22-20

* “Interrupt Pane” on page 22-24

+ “System Tasks Pane” on page 22-30

+ “System Task Pane” on page 22-31

+ “System Interrupt Pane” on page 22-35
* “Profile Report Pane” on page 22-38

22 Concurrent Execution Window

Concurrent Execution Window: Main Pane

In this section...

“Concurrent Execution Window Overview” on page 22-2

“Enable explicit model partitioning for concurrent behavior” on page 22-5

Concurrent Execution Window Overview

& Concurrent Execution: untitled (Active) E@

Select:

4 |lghy Concurrent Execution
[Data Transfer

Concurrent Execution

4 @ (Ianored) Tasks and Mapping The configuration for concurrent execution enables definition of tasks and assignment of
a CFU blocks to these tasks.
Periodic Associated modekuntitled
@ System tasks Associated configuration: Confiquration

@ Profile report

Concurrency modeling options

[Enable explict model partitioning for concurrent behavior

Target architecture: Default (built-in) Select...

J Revert Help Apply

The Concurrent Execution window comprises the following panes:

+ Concurrent Execution (root level)

Display general information for the model, including model name, configuration set
name, and status of configuration set.

* Data Transfer

22-2

Concurrent Execution Window: Main Pane

Configure data transfer methods between tasks.

+ Tasks and Mapping

Map blocks to tasks.
+ “CPU Pane” on page 22-11

Set up software nodes.

* Periodic

Name periodic tasks.
+ Task

Define and configure a periodic task that the target operating system executes.

* Interrupt

Define aperiodic event handler that executes in response to hardware or software
interrupts.

+ System Task Pane

Display system tasks.
+ System Task

Display periodic system tasks.
* System Interrupt

Display interrupt system tasks.
+ “Profile Report Pane” on page 22-38

Generate and examine profile report for model.
Click items in the tree to select panes.
Configuration

This pane appears only if you select Allow tasks to execute concurrently on target
in the Model Explorer dialog box.

1 In the Model Hierarchy pane, right-click the active configuration and select Show
Concurrent Execution options.

22-3

22 Concurrent Execution Window

The Dialog pane displays the Solver parameters, which now contains a Concurrent
execution options section.

2 Select Allow tasks to execute concurrently on target.
3 Click Configure Tasks.

The concurrent execution dialog box is displayed.
See Also

“Configure Your Model for Concurrent Execution”

22-4

Concurrent Execution Window: Main Pane

Enable explicit model partitioning for concurrent behavior

Specify whether you want to manually map tasks (explicit mapping) or use the rate-
based tasks.

Settings
Default: On
Y On
Enable manual mapping of tasks to blocks.

Off

Allow implicit rate-based tasks.
Command-Line Information

Parameter: ExplicitPartitioning
Value: "on*® | "off*"
Default: "off*"

See Also

“Configure Your Model for Concurrent Execution”
Dependencies

Selecting this check box:

+ Allows custom task-to-block mappings. The node name changes to Tasks and
Mapping label and the icon changes.

+ Disables the Automatically handle rate transition for data transfer check box
on the Data Transfer pane.

Clearing this check box

+ Causes the software to ignore the task-to-block mappings. The node name changes to
(Ignored) Tasks and Mapping.

* Enables the Automatically handle rate transition for data transfer check box on
the Data Transfer pane.

22-5

22 Concurrent Execution Window

Data Transfer Pane

In this section...

“Data Transfer Pane Overview” on page 22-6
“Periodic signals” on page 22-7

“Continuous signals” on page 22-8
“Extrapolation method” on page 22-9

“Automatically handle rate transition for data transfer” on page 22-9

Data Transfer Pane Overview

Data Transfer Options
Defaults

Periodic signals: [Ensure deterministic transfer (maximum delay) -]

Continuous signals: [Ensure deterministic transfer (minimum delay) -]

Extrapolation method: [None -]

Automatically handle rate transition for data transfer

Edit options to define data transfer between tasks.

See Also

“Configure Your Model for Concurrent Execution”

22-6

Data Transfer Pane

Periodic signals

Select the data transfer mode of synchronous signals.

Settings

Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay)
Ensure maximum capacity during data transfer.
Ensure data integrity only

Ensure maximum data integrity during data transfer.
Dependency

This parameter is enabled if the Enable explicit task mapping to override implicit
rate-based tasks check box on the Concurrent Execution pane is selected.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-7

22 Concurrent Execution Window

22-8

Continuous signals

Select the data transfer mode of continuous signals.

Settings

Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay)
Ensure maximum capacity during data transfer.
Ensure data integrity only

Ensure maximum data integrity during data transfer.
Dependency

This parameter is enabled if the Enable explicit task mapping to override implicit
rate-based tasks check box on the Concurrent Execution pane is cleared.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

Data Transfer Pane

Extrapolation method

Select the extrapolation method of data transfer to configure continuous-to-continuous
task transitions.

Settings
Default: None

None

Do not use any extrapolation method for task transitions.
Zero Order Hold

User zero order hold extrapolation method for task transitions.
Linear

User linear extrapolation method for task transitions.
Quadratic

User quadratic extrapolation method for task transitions.
Dependency

This parameter is enabled if the Enable explicit task mapping to override implicit
rate-based tasks check box on the Concurrent Execution pane is selected.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

Automatically handle rate transition for data transfer

Select the extrapolation method of data transfer to configure continuous-to-continuous
task transitions.

Settings
Default: Off

22-9

22 Concurrent Execution Window

22-10

41 On

Enable the software to handle rate transitions for data transfers automatically,
without user intervention.

Off
Disable the software from handling rate transitions for data transfers automatically.

Dependencies

This parameter is enabled if the Concurrent Execution pane Enable explicit task
mapping to override implicit rate-based tasks check box is cleared.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

CPU Pane

CPU Pane

CPU Pane Overview

Configure software nodes.
See Also

“Configure Your Model for Concurrent Execution”

22-11

22 Concurrent Execution Window

Name

Specify a unique name for software node.
Settings

Default: CPU

+ Alternatively, enter a unique character vector to identify the software node. This
value must be a valid MATLAB variable.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-12

Hardware Node Pane

Hardware Node Pane

Hardware Node Pane Overview

Configure hardware nodes.

22-13

22 Concurrent Execution Window

Name

Specify name of hardware node.
Settings

Default: FPGAN

+ Alternatively, enter a unique character vector to identify the hardware node. This
value must be a valid MATLAB variable.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

Clock Frequency [MHz]

Specify clock frequency of hardware node.

Settings

Default: 33

Command-Line Information

See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

Color
Specify the color for the hardware node icon.
Settings

Default: Next color in basic color sequence

22-14

Hardware Node Pane

Tips

The hardware node icon appears in the tree.
Command-Line Information

See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-15

22 Concurrent Execution Window

Periodic Pane

In this section...

“Periodic Pane Overview” on page 22-16
“Name” on page 22-17

“Periodic Trigger” on page 22-18
“Color” on page 22-19

“Template” on page 22-19

Periodic Pane Overview

Periodic Trigger: Periodic
Properties
Name: Periodic

Period: 1

Color: @

Configure periodic (synchronous) tasks.
See Also

“Configure Your Model for Concurrent Execution”

22-16

Periodic Pane

Name

Specify a unique name for the periodic task trigger configuration.
Settings

Default: Periodic

+ Alternatively, enter a unique character vector to identify the periodic task trigger
configuration. This value must be a valid MATLAB variable.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-17

22 Concurrent Execution Window

Periodic Trigger

Specify the period of a periodic trigger

Settings

Default:

+ Change ERTDefaul tEvent to the actual trigger source event.
Command-Line Information

See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-18

Periodic Pane

Color

Specify a color for the periodic trigger icon.

Settings

Default: Blue

* Click the color picker icon to select a color for the periodic trigger icon.
Command-Line Information

See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

Template

Specify the XML-format custom architecture template file that code generation
properties use for the task, periodic trigger or aperiodic triggers.

Settings

Default: None

The XML-format custom architecture template file defines these settings.
Command-Line Information

See “Programmatic Interface for Concurrent Execution”.

See Also

+ “Define a Custom Architecture File”

+ “Configure Your Model for Concurrent Execution”

22-19

22 Concurrent Execution Window

Task Pane

In this section...

“Task Pane Overview” on page 22-20
“Name” on page 22-21

“Period” on page 22-22

“Color” on page 22-23

Task Pane Overview

Task: Controllera

Properties
Mame: Controllers

Period: 0.1

Colar: @

Specify concurrent execution tasks. You can add tasks for periodic and interrupt-driven
(aperiodic) tasks.

See Also

“Configure Your Model for Concurrent Execution”

22-20

Task Pane

Name

Specify a unique name for the task configuration.
Settings

Default: Task

+ Alternatively, enter a unique character vector to identify the periodic task trigger
configuration. This value must a valid MATLAB variable.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-21

22 Concurrent Execution Window

Period

Specify the period for the task.
Settings

Default: 1

Minimum: O

+ Enter a positive real or ratio value.
Tip

You can parameterize this value by using MATLAB expression character vectors as
values.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-22

Task Pane

Color

Specify a color for the task icon.

Settings

Default: Blue

+ Click the color picker icon to select a color for the task icon.
Tips

The task icon appears on the top left of the Model block. It indicates the task to which the
Model block is assigned.

+ Asyou add a task, the software automatically assigns a color to the task icon, up
to six colors. When the current list of colors is exhausted, the software reassigns
previously used colors to the new tasks, starting with the first color assigned.

+ If you select a different color for an icon and then use the software to automatically
assign colors, the software assigns a preselected color.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-23

22 Concurrent Execution Window

Interrupt Pane

In this section...

“Interrupt Pane Overview” on page 22-24

“Name” on page 22-25

“Color” on page 22-26

“Aperiodic trigger source” on page 22-27

“Signal number [2,SIGRTMAX-SIGRTMIN-1]” on page 22-28

“Event name” on page 22-29

Interrupt Pane Overview
Configure interrupt-driven (aperiodic) tasks.

Apetiodic Trigger: Interrupt

Propetties

hame: Interrupt

Calat: @

Code generation properties

Aperiodic trigger source: |F‘osix Signal {Linuw:Ycdorks 6.0 -
Signal number [2,SIGRTMAX-SIGRTMIN-1]: 2
See Also

“Configure Your Model for Concurrent Execution”

22-24

Interrupt Pane

Name

Specify a unique name for the interrupt-driven task configuration.
Settings

Default: Interrupt

+ Enter a unique character vector to identify the interrupt-driven task configuration.
This value must a valid MATLAB variable.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-25

22 Concurrent Execution Window

22-26

Color

Specify a color for the interrupt icon.

Settings

Default: Blue

* Click the color picker icon to select a color for the interrupt icon.
Tips

The interrupt icon appears on the top left of the Model block. It indicates the task to
which the Model block is assigned.

+ Asyou add an interrupt, the software automatically assigns a color to the interrupt
icon, up to six colors. When the current list of colors is exhausted, the software
reassigns previously used colors to the new interrupts, starting with the first color
assigned.

+ If you select a different color for an icon and then use the software to automatically
assign colors, the software assigns a preselected color.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

Interrupt Pane

Aperiodic trigger source

Specify the trigger source for the interrupt-driven task.
Settings

Default: Posix Signal (Linux/VxWorks 6.x)

Posix Signal (Linux/VxWorks 6.x)

For Linux or VxWorks® systems, select Posix Signal (Linux/VxWorks 6.x).
Event (Windows)

For Windows systems, select Event (Windows).

Dependencies

This parameter enables either Signal number [2,SIGRTMAX-SIGRTMIN-1] or Event
name.

+ Selecting Posix Signal (Linux/VxWorks 6.x) enables the following parameter:

Signal number [2,SIGRTMAX-SIGRTMIN-1]
+ Selecting Event (Windows) enables the following parameter:

Event name
Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-27

22 Concurrent Execution Window

22-28

Signal number [2,SIGRTMAX-SIGRTMIN-1]

Enter the POSIX® signal number as the trigger source.
Settings

Default: 2

Minimum: 2

Maximum: SIGRTMAX-SIGRTMIN-1

+ Enter the POSIX signal number as the trigger source.
Dependencies

Aperiodic trigger source > Posix signal (Linux/VxWorks 6.x) enables this
parameter.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

Interrupt Pane

Event name

Enter the name of the event as the trigger source.

Settings

Default: ERTDefaul tEvent

* Change ERTDefaultEvent to the actual trigger source event.
Dependencies

Aperiodic trigger source > Event (Windows) enables this parameter.
Command-Line Information

See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-29

22 Concurrent Execution Window

System Tasks Pane

System Tasks Pane Overview

Display system tasks.

System tasks

Autogenerate tasks and mapping(Sinvokes update diagram)

See Also

“Configure Your Model for Concurrent Execution”

22-30

System Task Pane

System Task Pane

In this section...

“System Task Pane Overview” on page 22-31
“Name” on page 22-32

“Period” on page 22-33

“Color” on page 22-34

System Task Pane Overview

Display periodic system tasks.

Task: Discretel

Properties
Mame: |Discretel

Period: |0.1
Color: 2

See Also

“Configure Your Model for Concurrent Execution”

22-31

22 Concurrent Execution Window

Name

Specify a default name for the periodic system task configuration.
Settings

Default: DiscreteN

Tip

To change the name, period, or color of this task, right-click the task node and select
Convert to editable periodic task.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-32

System Task Pane

Period

Specify the period for the task.
Settings

Default: 1

Minimum: O

+ Enter a positive real or ratio value.
Tip

+ To change the name, period, or color of this task, right-click the task node and select
Convert to editable periodic task.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.
See Also

“Configure Your Model for Concurrent Execution”

22-33

22 Concurrent Execution Window

Color

Specify the outline color for the task icon.
Settings

Default: Blue

Tips

The task icon appears on the top left of the Model block. It indicates the task the Model
block is assigned to.

+ To change the name, period, or color of this task, right-click the task node and select
Convert to editable periodic task.

See Also

“Configure Your Model for Concurrent Execution”

22-34

System Interrupt Pane

System Interrupt Pane

In this section...
“System Interrupt Pane Overview” on page 22-35

“Name” on page 22-36
“Color” on page 22-37

System Interrupt Pane Overview

Display interrupt system tasks.

Aperiodic Trigger: Asynchronous

Properties

Mame: |Asynchronous

Color: 2

See Also

“Configure Your Model for Concurrent Execution”

22-35

22 Concurrent Execution Window

Name

Specify a default name for the interrupt system task.
Settings

Default: Asynchronous

Tip

To change the name or color of this task, right-click the task node and select Convert to
editable aperiodic trigger.

Command-Line Information
See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-36

System Interrupt Pane

Color
Specify the outline color for the task icon.
Tips

The task icon appears on the top left of the Model block. It indicates the task the Model
block is assigned to.

* To change the name or color of this task, right-click the task node and select Convert
to editable aperiodic task.

See Also

“Configure Your Model for Concurrent Execution”

22-37

22 Concurrent Execution Window

Profile Report Pane

In this section...

“Profile Report Pane Overview” on page 22-38
“Number of time steps” on page 22-39

Profile Report Pane Overview

Generate and examine profile report for model.

Profile Report

MNumber of time steps: 100

Generate task execution profile report (Finvokes build and execution) 5‘3[

Cannot find an associated profile report in the current folder, Generate one using the button abave.

See Also

“Configure Your Model for Concurrent Execution”

22-38

Profile Report Pane

Number of time steps

Specify number of time steps to generate profile report.
Settings

Default: 100

* Enter the number of time steps to collect data.
Command-Line Information

See “Programmatic Interface for Concurrent Execution”.

See Also

“Configure Your Model for Concurrent Execution”

22-39

Simulink Simulation Stepper

23 simulink Simulation Stepper

Simulation Stepping Options

Simulation Stepping Options: vdp @
["] Enable stepping back
Maximum number of saved back steps | 10
Interval between stored back steps 10 steps
Mowve back/forward by 1 steps
["] Pause simulation when time reaches | 5
J oK] I Cancel ‘ I Help ‘ I Apply

In this section...

“Simulation Stepping Options Overview” on page 23-2
“Enable stepping back” on page 23-4

“Maximum number of saved back steps” on page 23-5
“Interval between stored back steps” on page 23-6

“Move back/forward by” on page 23-7

“Pause simulation when time reaches” on page 23-8

Simulation Stepping Options Overview

Use the Simulation Stepping Options dialog box to configure the time and the manner of
manually stepping through a simulation.

23-2

Simulation Stepping Options

Configuration

This pane appears when you select Simulation > Stepping Options.

1 Set the time at which you wish to pause the simulation

2 To step backwards through a simulation, select Enable stepping back and specify
the total number and frequency of snapshots.

3 Specify the increment of steps by which the simulation steps either forward or
backwards.

4 To pause simulation at a particular time, select Pause simulation when time
reaches check box and enter the pause time.

Tips

* To start the Simulation Stepping Options dialog box from the Simulink toolbar, click

* You can change the value while the simulation is running or paused.
See Also

+ “How Simulation Stepper Helps With Model Analysis”

23-3

23 simulink Simulation Stepper

Enable stepping back
Enable stepping back.
Settings
Default: Off
Y1 On

Enable stepping back.

Off
Disable stepping back.

Tip

Simulation stepping (forward and back) is available only for Normal and Accelerator
modes.

Dependencies

This parameter enables the Maximum number of saved back steps and Interval
between stored back steps parameters.

See Also

“How Simulation Stepper Helps With Model Analysis”

23-4

Simulation Stepping Options

Maximum number of saved back steps

Enter the maximum number of snapshots that the software can capture. A snapshot at a
particular simulation time captures all the information required to continue a simulation
from that point.

Settings
Default: 10
Minimum: 0
Dependencies

Enable stepping back enables this parameter and the Interval between stored
back steps parameter.

See Also

+ “How Simulation Stepper Helps With Model Analysis”

+ “Simulation Snapshots”

23-5

23 simulink Simulation Stepper

23-6

Interval between stored back steps

Enter the number of major time steps to take between capturing simulation snapshots.
Settings

Default: 10

Minimum: 1

+ “How Simulation Stepper Helps With Model Analysis”

+ “Simulation Snapshots”

Tip

The number of steps to skip between snapshots. This parameter enables you to save
snapshots of simulation state for stepping backward at periodic intervals, such as
every three steps forward. This interval is independent of the number of steps taken in
either the forward or backward direction. Because taking simulation snapshots affects
simulation speed, saving snapshots less often can improve simulation speed.

Dependencies

Enable stepping back enables this parameter and the Maximum number of saved
back steps parameter.

See Also

* “How Simulation Stepper Helps With Model Analysis”

+ “Simulation Snapshots”

Simulation Stepping Options

Move back/forward by

Enter the number of major time steps for a single call to step forward or back.
Settings

Default: 1

Minimum: 1

Tip

The maximum number of steps, or snapshots, to capture while simulating forward.
The greater the number, the more memory the simulation occupies and the longer the
simulation takes to run.

See Also

+ “How Simulation Stepper Helps With Model Analysis”

+ “Simulation Snapshots”

23-7

23 simulink Simulation Stepper

23-8

Pause simulation when time reaches

Pause simulation when time reaches the specified time(s).

Settings

Default: Off

Y1 On

Enable stepping back.

Off
Disable stepping back.

Selecting this check box enables the associated text box. In this text box, enter the time
at which simulation is to be paused.

Default: 5

Minimum: 0

This value can be a scalar value, or a vector of times. Specifying a vector of pause
times is equivalent to specifying multiple separate pause times for a single
simulation.

You can specify pause times as variables in the model or MATLAB workspace.

The stepper does not alter the course of the simulation. As a consequence, specifying a
value for a pause time does not necessarily pause the simulation at exactly that time.
Instead, the simulation pauses at whatever simulation time is closest to the requested
pause time, without going below it.

See Also

“How Simulation Stepper Helps With Model Analysis”

Simulink Variant Manager

24 Simulink Variant Manager

Variant Manager Overview

24-2

In this section...

“Variant Configuration Data” on page 24-4
“Model Hierarchy” on page 24-9

“Log” on page 24-13

The Variant Manager is a central tool that allows you to manage various variation points
that are modeled using variant blocks in a system model.

A model hierarchy may contain several variant blocks, each with many variant

choices, combinations of which correspond to particular configurations of the system.
Switching between variant choices and validating them manually can be complicated and
erroneous.

Use the Variant Manager to create predefined configurations for a model, and use the
model under any of the configurations. You can create the configurations by combinations
of different variant choices across the model hierarchy.

Using the Variant Manager, you can:

+ Define, validate, and visualize variant configurations.
* Define and validate constraints for the model.
+ Specify the default active configuration.

* Set control variables to either integer, enumeration values, or Simul ink.Parameter
objects.

+ Associate Simulink.VariantConfigurationData object with the model.
+ Validate a variant configuration or model without updating the model.

* Reduce a variant configuration to reduce the model.

Consider the model Variant Management. To open the Variant Manager, you can:

* Right-click the variant badge and select Open in Variant Manager.

Variant Manager Overview

I'_T —

Block Parameters (VariantSource)
Cwerride using L
Open in Variant Manager

Refresh Blocks Ctrl+K

Right-click the variant block, and in the context menu, click Variant > Open in
Variant Manager.

Select the variant block, and click Diagram > Variant > Open in Variant
Manager.

Click Open block in Variant Manager available on the variant block’s Block
Parameter dialog box.

24-3

24 Simulink Variant Manager

{94 Variant Manager: slexVariantManagementExample =2 EcE ===
Variant configuration object: Model hierarchy (Base workspace)
- & View |Model & variant blocks = | [4a1] (]
Configurations | Constraints
Base workspace Mame Submedel Cenfiguration Variant Control Condition
=] slexVariantManagementExample
@ =] Controller
- [] Linear Controller [LINEAR_CONTROL Ctrl==1
» b Monlinear Controller g NON_LIMEAR_CONTROL Ctrl==2
By Smart Controller &1 SMART_CONTROL Ctrl==3
= @0 Plant
|4
Base workspace
Control Variables 5
(2] (3] (o) "] (I £
MName Value
Log
= slexVariantManagementExample ' Success
~Data source [Base workspace
Configuration Base workspace
Reduce model...

The Variant Manager window is divided into three panes:

+ The “Variant Configuration Data” on page 24-4 pane which enables you to define
variant configurations and constraints, and export them as variant configuration data

objects.

* The “Model Hierarchy” on page 24-9 pane which enables you to visualize the
variant hierarchy.

* The “Log” on page 24-13 pane which displays information on the source of control
variables and validation errors.

Variant Configuration Data

Use this pane to create configurations, define control variables, associate referenced
model configurations, and define constraints. The configurations and associated data are
stored in a variant configuration data object.

244

Variant Manager Overview

Variant configuration chject:

Configurations | Constraints

Base workspace

|Configurationl

=) =) (3 (&

Configurationl

[Descrptioa] Control Varsbies | submedelGar] </ »
() (&) (86 (G4 () ()

Mame VYalue
F- [wss_MODE 2

Reduce model...

24-5

24 Simulink Variant Manager

24-6

Variant Configuration Object

After you add a variant configuration, type a name for the variant configuration object

in the Variant configuration object box. You can use the drop-down menu to load a
variant configuration object from a file or refresh a loaded variant configuration object.
You can load a variant configuration object either as a MAT file or a MATLAB script (.m
file). To store the variant configuration object in the base workspace and associate it with

the model, click Export f To store the variant configuration object in a folder of your
choice either as a MAT-file or a MATLAB script (.m file), click Save As from the drop-
down menu of the Export button.

Configurations

The Configurations tab is divided into upper and the lower panes. You can use the

upper pane to add, delete, or copy a variant configurations. You can also set a default
configuration.

The upper pane has these buttons to manage a variant configuration.

Description

Add variant configuration

Delete variant configuration

Duplicate variant configuration

NEIEEE

Set/Clear default active configuration

(@]

After a variant configuration is added, you can use the lower pane on the
Configurations tab to add a description, control variables, and the submodel
configurations for it. You can add control variables and export them to the base
workspace even when a variant configuration is not added. The lower pane contains

these tabs:

Description — Provide a description for the selected variant configuration.

Control Variables — Add, delete, copy or import control variables. Toggle data type
and import control variables from the workspace.

Variant Manager Overview

Button

Description

Add control variable

Delete the selected control variable

leJ

Create a copy of the selected control variable

Toggle type of a control variable

&
A control variable can be either a character vector or a
Simulink.Parameter object.

[Edit Simul ink.Parameter control variables. This option
gets activated when the selected control variable is a
Simulink.Parameter object.

i Import control variables from base workspace

* Submodel Configurations — Define variant configuration for a referenced model.

Add or delete a referenced model configuration.

Configuration: Configuration

| Description I Control ‘ufariables| Submodel Configurations L

Submodel
model

Configuration

|cnnﬁg

Activate Configuration

To refresh and activate the variant model for a configuration, select a configuration from
the list of Configurations and click Activate. If you click the Activate button without
selecting any configuration, the values for the Control Variables are picked from the
base workspace. For such cases, the Control Variables that are defined in the Variant
Manager overrides the corresponding values in the base workspace.

24-7

24 simulink Variant Manager

When you open the Variant Manager for a parent model that contains referenced models
(Submodel), only the parent model is validated. The referenced models (Submodel) are
validated only when you activate or expand (click +) the reference models.

{34 Variant Manager: sleVariantReducer

o=]
Variant configuration object: Model hierarchy (configl)
sled/ariantReducer config "] & 7 View [Model Bvariant blocks+ (%] (=]
Configurations | Constraints :
Base workspace Name Submodel Configuration Variant Control Condition
|cowﬁgl = slexVariantReducer
@ |config2 [E 4 Variant Sink
=% Vanant Sourcel
0 Input1 v==1 (N/A)
Input 2 V==2 (M/A
(@ Variant Subsystem
configl
Description | Control Variables | Submodel C... »
(52
Name
; |v
dlw
Log
= slexVariantReducer Success
~Data source [Base workspace
Configuration configl in 'sleVariantReducer_config'
Reduce model...
o
Constraints

Use the Constraints tab to add or delete the model-level constraints. Similar to the
Configurations tab, the Constraints tab also contains upper and lower panes.

The upper pane displays the name and condition of the constraints while the lower pane
displays the description. The condition expression of the constraint must be satisfied by
all variant configurations in the model.

24-8

Variant Manager Overview

@ Variant Manager: untitled

Wariant configuration data
MName |wdp -

Mame Condition

Description: Constraintl

[Reduce model...

Model Hierarchy

You can visualize and explore the variant hierarchy of a model and edit the properties
of variant blocks, variant choices, and variant objects from the Model hierarchy pane.
This pane displays the Name, Submodel Configuration, Variant Control, and
associated Conditions of variant objects used as variant controls.

Browse the hierarchy using the navigation icons. The controls on the Model hierarchy
pane allow you to perform the following actions:

* Refresh and validate hierarchy.
+ Display only variant blocks.

* Navigate among active, invalid, and overridden variant choices.
Show

Selectively display blocks in the variant hierarchy:

24-9

24 Simulink Variant Manager

24-10

+ Select Model and variant blocks to display only model reference and variant
blocks.

+ Select All hierarchical blocks to display all hierarchical blocks in the model.

Hierarchy Table

The model hierarchy is displayed in a tree, with each block representing a node in the
hierarchy. The hierarchy displays active, inactive, overridden, and invalid variants.
You can edit referenced model configurations, variant controls, and variant conditions.
Expand nodes to view the underlying blocks.

Note: Protected reference models cannot be viewed in the hierarchy.

The hierarchy table consists of these columns:

+ Name — Name of the model or block.

* Submodel Configuration — Configurations used by referenced models. You can
only edit the Submodel Configuration for rows that display models referenced by
the top model.

* Variant Control — Variant control parameter of a variant choice. This column is
identical to the Variant Control column of the parameter dialog box of variant blocks.
You can edit this column for variant choices across the hierarchy.

+ Condition — Displays and allows you to edit the condition for the
Simulink.Variant object when it is used as variant control. You can edit this
column for variant choices across the variant hierarchy.

Tip: Right-click the item on the hierarchy table and use the Override using this
Choice or the Open Parent Block Parameters options on the context menu, as
necessary.

In the model hierarchy section, each block is represented with an icon. The following
table displays the icons and the corresponding block name.

Icon Block Name

@ Model Block

Variant Manager Overview

a
(]
S

Block Name

Inline Variants Block (Variant Source and
Variant Sink)

Variant Subsystem block

Subsystem block

Model Variant block

Simulink Function block

Function Caller block

Variant Sink output port

Variant Source input port

Variant Subsystem block with Propagate
conditions outside of variant
subsystem option selected.

e 0 000 @0 e

Variant Subsystem block with Analyze
all choice during update diagram and
generate preprocessor conditionals
option selected.

o

Variant Subsystem block with Override
variant conditions and use the
following variant option selected.

fi]

Variant Subsystem block with Propagate
conditions outside of variant
subsystem and Analyze all choice
during update diagram and generate
preprocessor conditionals options
selected.

24-11

24 Simulink Variant Manager

24-12

Icon

Block Name

Variant Subsystem block with Propagate
conditions outside of variant
subsystem and Override variant
conditions and use the following
variant options selected.

Inline Variants Block (Variant Source and
Variant Sink) with Allow zero active
variant control option selected.

Inline Variants Block (Variant Source and
Variant Sink) with Override variant
conditions and use the following
variant option selected.

Inline Variants Block (Variant Source and
Variant Sink) with Analyze all choice
during update diagram and generate
preprocessor conditionals option
selected.

&

Inline Variants Block (Variant Source and
Variant Sink) with Allow zero active
variant control and Analyze all choice
during update diagram and generate
preprocessor conditionals options
selected.

Initialize Function block

Event Listener block of Initialize Function
block

Reset Function block

Event Listener block of Rest Function block

Terminate Function block

o e cikl cE

Event Listener block of Terminate
Function block

Variant Manager Overview

Log

The Log pane displays information and validation results of the source of control
variables for the models in the hierarchy.

For example, if a variant configuration is used for a referenced model, the referenced
model name is displayed in the row along with name of the variant configuration data
object and variant configuration. The pane also displays errors encountered during
validation of the variant configuration.

Log

=I-Data sources used for models
-iv_21_vanant_reducer Configuration 'Configuration2' of unexported variant configuration data object 'Veonfig'

=-iw_21_wariant_reducer 2 Errors
“Vanant Sourcel The vanant Source block 'iv_21_varniant_reducer/Variant Sourcel' does not contain an active variant.
-Variant Source? The variant Source bleck 'iv_21_variant_reducer/Variant Source2' dees not contain an active variant.

Related Examples
. “Create and Validate Variant Configurations”
. “Import Control Variables to Variant Configuration”

. “Define Constraints”

24-13

